首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11200篇
  免费   1925篇
  国内免费   1584篇
化学   7864篇
晶体学   188篇
力学   739篇
综合类   151篇
数学   1464篇
物理学   4303篇
  2024年   34篇
  2023年   205篇
  2022年   369篇
  2021年   372篇
  2020年   494篇
  2019年   472篇
  2018年   421篇
  2017年   393篇
  2016年   529篇
  2015年   674篇
  2014年   688篇
  2013年   925篇
  2012年   1094篇
  2011年   1074篇
  2010年   829篇
  2009年   797篇
  2008年   874篇
  2007年   742篇
  2006年   639篇
  2005年   569篇
  2004年   409篇
  2003年   328篇
  2002年   319篇
  2001年   217篇
  2000年   222篇
  1999年   154篇
  1998年   84篇
  1997年   87篇
  1996年   73篇
  1995年   79篇
  1994年   54篇
  1993年   60篇
  1992年   37篇
  1991年   37篇
  1990年   34篇
  1989年   25篇
  1988年   39篇
  1987年   10篇
  1986年   23篇
  1985年   13篇
  1984年   11篇
  1983年   14篇
  1982年   14篇
  1981年   8篇
  1980年   15篇
  1979年   16篇
  1978年   20篇
  1977年   8篇
  1973年   8篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
A survey of the literature reveals that the spectroscopic displacement method, in which phenolphthalein is used as a competitive chromophore to determine binding constants of β-cyclodextrin with surfactants was successful in the case of homologous hydrocarbon and fluorocarbon anionic surfactants. We show here that this method can be applied also for homologous alkyltrimethylammonium bromides (with alkyl varying from octyl- to hexadecyl) under the condition that the concentration of the cationic surfactant is distinctly lower than the value of itscritical micelle concentration.  相似文献   
922.
Rapid-scan staircase voltammetry is used to strip lead plated on a rotating mercury film electrode. With potential steps of 10 mV every 64 μs, the entire stripping of the metals is made in only 4 ms. Noise is reduced by averaging several current measurements on each step. The method allows quantification of 0.1 μg l?1 lead within a total time to less than 4 min. Because of the rapid scan, the rotation of the electrode can continue during the stripping step. Oxygen does not affect the measurements although a small decrease in current is observed. The method is tested on a sample of sea water. Some results are also given for cadmium.  相似文献   
923.
Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C2H4/C2H6) pressure swing adsorption (PSA). ZU-901 exhibits an “S” shaped C2H4 curve with high sorbent selection parameter (65) and could be mildly regenerated. Through green aqueous-phase synthesis, ZU-901 is easily scalable with 99 % yield, and it is stable in water, acid, basic solutions and cycling breakthrough experiments. Polymer-grade C2H4 (99.51 %) could be obtained via a simulating two-bed PSA process, and the corresponding energy consumption is only 1/10 of that of simulating cryogenic distillation. Our work has demonstrated the great potential of pore engineering in designing porous materials with desired adsorption and desorption behavior to implement an efficient PSA process.  相似文献   
924.
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique “soft” inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.  相似文献   
925.
Pore environment and aggregated structure play a vital role in determining the properties of porous materials, especially regarding the mass transfer. Reticular chemistry imparts covalent organic frameworks (COFs) with well-aligned micro/mesopores, yet constructing hierarchical architectures remains a great challenge. Herein, we reported a COF-to-COF transformation methodology to prepare microtubular COFs. In this process, the C3-symmetric guanidine units decomposed into C2-symmetric hydrazine units, leading to the crystal transformation of COFs. Moreover, the aggregated structure and conversion degree varied with the reaction time, where the hollow tubular aggregates composed of mixed COF crystals could be obtained. Such hierarchical architecture leads to enhanced mass transfer properties, as proved by the adsorption measurement and chemical catalytic reactions. This self-template strategy was successfully applied to another four COFs with different building units.  相似文献   
926.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   
927.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
928.
The hydrogenation of unsaturated carbons is a commonly used synthetic tool in pharmaceutical and industrial production. Recently, the Norton group realized highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. Despite the great efforts made by experimentalists, details regarding the mechanism remained unclear. In this work, detailed DFT calculations were carried out to elucidate the principal features of this transformation. For enones we find that two possible competing mechanisms proposed by the experimental groups are computationally excluded, our proposed alternative mechanism with a total barrier of 20.0 kcal mol−1 is theoretically feasible, solvent methanol to also plays a crucial role in assisting β-hydrogenation in addition to being the hydrogen source for α-hydrogenation, and the cross-polarization of the substrate enone-conjugated system to result in an enhanced charge density of the α-carbon, which favors being hydrogenated first. For isolated alkenes, neither of the two possible competing mechanisms can be excluded computationally and which carbon atom is first hydrogenated depends on the electronic properties of the substrate itself. The combination of rhodium and C=C bonds changes the electronic properties of H on the rhodium hydride and enhances its hydrogenation activity.  相似文献   
929.
Jian Yang  Bo Gao  Wei Liu  Jiang Du  Prof. Qun Xu 《Chemphyschem》2023,24(10):e202200793
The realization of ferromagnetic ordering of two-dimensional (2D) carbon material graphdiyne (GDY) has attracted great attention due to its promising application in spin semiconductor devices. However, the absence of localized spins makes the pristine GDY intrinsically nonferromagnetic. Herein, we report the realization of robust room-temperature (RT) ferromagnetism (FM) with Curie temperature (TC) up to 325 K for GDY Nanosheets (GDYNs) by supercritical CO2 (SC CO2). Experimental and theoretical calculations reveal that the new chemical bond of C−O−Si can be formed because of the unique effect of SC CO2, which help to enhance the charge transfer and generates long-range ferromagnetic order. The RT saturation magnetization (MS) reaches 1.125 emu/g, which is much higher than that of carbon-based materials reported up to now. Meanwhile, by changing the conditions of SC CO2 such as pressure, ferromagnetic responses can be manipulated, which is great for potential spintronics applications of GDY.  相似文献   
930.
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号