首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   77篇
  国内免费   40篇
化学   780篇
晶体学   9篇
力学   32篇
综合类   1篇
数学   106篇
物理学   222篇
  2023年   10篇
  2022年   17篇
  2021年   18篇
  2020年   21篇
  2019年   25篇
  2018年   23篇
  2017年   11篇
  2016年   39篇
  2015年   48篇
  2014年   42篇
  2013年   73篇
  2012年   72篇
  2011年   78篇
  2010年   63篇
  2009年   47篇
  2008年   77篇
  2007年   56篇
  2006年   52篇
  2005年   48篇
  2004年   31篇
  2003年   22篇
  2002年   29篇
  2001年   16篇
  2000年   23篇
  1999年   13篇
  1998年   13篇
  1997年   13篇
  1996年   16篇
  1995年   12篇
  1994年   13篇
  1993年   6篇
  1992年   10篇
  1991年   12篇
  1990年   7篇
  1989年   4篇
  1988年   9篇
  1985年   4篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1974年   4篇
  1973年   5篇
  1967年   5篇
  1966年   3篇
  1934年   2篇
排序方式: 共有1150条查询结果,搜索用时 15 毫秒
121.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
122.
An organic–inorganic hybrid zinc phosphate with 28‐ring channels was synthesized by use of an organic ligand instead of organic amine template under a hydro(solvo)thermal condition. This crystalline zinc phosphate contains large channels constructed from 28 zinc and phosphate tetrahedral units. The walls of the channels consist of two types of zincophosphate chains, in which the Zn atoms are coordinated by 2,4,5‐tri(4‐pyridyl)‐imidazole ligands as pendent groups. This compound exhibits yellow emission and interesting properties of removing cobalt, cadmium, and mercury cations from aqueous solution. A new two‐dimensional organic–inorganic hybrid zincophosphate was also obtained by changing the solvent mixture ratios in the synthesis.  相似文献   
123.
Three highly porous metal–organic frameworks (MOFs) with a uniform rht‐type topological network but hierarchical pores were successfully constructed by the assembly of triazole‐containing dendritic hexacarboxylate ligands with ZnII ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas‐adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules. The visible selective adsorption of dye molecules makes these MOFs highly promising porous materials for pore‐size‐dependent large‐molecule capture and separation.  相似文献   
124.
Poly(amidoamine) dendrons of 1-3 generations with naphthyl groups at the periphery and a dansyl group at the focal point were synthesized and carefully characterized. Intramolecular energy-transfer properties of these flexible aliphatic-scaffold light-harvesting dendrons were investigated by UV-vis absorption and fluorescence spectroscopy. Efficient energy transfer from the naphthyl groups to the dansyl group occurred for both the first and the second generation dendrons (the energy-transfer efficiency was 94.3% and 76.9%, respectively), whereas the third generation dendron exhibited a low energy-transfer efficiency of 17.8%. The average donor-acceptor distances between the naphthyl and dansyl groups were calculated for different generation dendrons. Different degrees of the backfolding of dendritic branches were used to interpret the different donor-acceptor distances.  相似文献   
125.
Sample preparation methods used for genetically modified organisms (GMOs) analysis are often time consuming, require extensive manual manipulation, and result in limited amounts of purified protein, which may complicate the detection of low‐abundance GM protein. A robust sample pretreatment method prior to mass spectrometry (MS) detection of the transgenic protein (5‐enolpyruvylshikimate‐3‐phosphate synthase [CP4 EPSPS]) present in Roundup Ready soya is investigated. Liquid chromatography‐multiple reaction monitoring tandem MS (nano LC‐MS/MS‐MRM) was used for the detection and quantification of CP4 EPSPS. Gold nanoparticles (AuNPs) and concanavalin A (Con A)‐immobilized Sepharose 4B were used as selective probes for the separation of the major storage proteins in soybeans. AuNPs that enable the capture of cysteine‐containing proteins were used to reduce the complexity of the crude extract of GM soya. Con A‐sepharose was used for the affinity capture of β‐conglycinin and other glycoproteins of soya prior to enzymatic digestion. The methods enabled the detection of unique peptides of CP4 EPSPS at a level as low as 0.5% of GM soya in MRM mode. Stable‐isotope dimethyl labeling was further applied to the quantification of GM soya. Both probes exhibited high selectivity and efficiency for the affinity capture of storage proteins, leading to the quantitative detection at 0.5% GM soya, which is a level below the current European Union's threshold for food labeling. The square correlation coefficients were greater than 0.99. The approach for sample preparation is very simple without the need for time‐consuming protein prefractionation or separation procedures and thus presents a significant improvement over existing methods for the analysis of the GM soya protein.  相似文献   
126.
Superwetting membranes with responsive properties have attracted heightened attention because of their fine‐tunable surface wettability. However, their functional diversity is severely limited by the “black‐or‐white” wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2/octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal‐expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m?2 h), as well as real‐time liquid signal expression with alterable signals.  相似文献   
127.
A universal nano‐capillary based method for sample deposition on the silicon nitride membrane of liquid‐cell transmission electron microscopy (LCTEM) chips is demonstrated. It is applicable to all substances which can be dispersed in a solvent and are suitable for drop casting, including catalysts, biological samples, and polymers. Most importantly, this method overcomes limitations concerning sample immobilization due to the fragility of the ultra‐thin silicon nitride membrane required for electron transmission. Thus, a straightforward way is presented to widen the research area of LCTEM to encompass any sample which can be externally deposited beforehand. Using this method, NixB nanoparticles are deposited on the μm‐scale working electrode of the LCTEM chip and in situ observation of single catalyst particles during ethanol oxidation is for the first time successfully monitored by means of TEM movies.  相似文献   
128.
Steric effect is used to obtain a highly diastereoselective rearrangement reaction.  相似文献   
129.
The immune scavenger protein DC-SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC-SIGN have not been reported. Herein, we report the development and application of a mass-spectrometry-based approach to both uncover and characterise the effects of O-glycans on the stability of DC-SIGN. We first quantify the Core 1 and 2 O-glycan structures on the carbohydrate recognition and extracellular domains of the protein using sequential exoglycosidase sequencing. Using ion mobility mass spectrometry, we show how specific O-glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas-phase stability of the DC-SIGN isoforms. We find that rather than the mass or length of glycoprotein modifications, the stability of DC-SIGN is better correlated with the number of glycosylation sites.  相似文献   
130.
Summary Two new Schiff bases, N-4-hydroxysalicylidene-glycylglycine (K·GGRS·H2O), N-O-vanillal-glycylglycine (K· GGVS·3H2O) and their manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized and characterized by elemental analysis, t.g.a., molar conductance, i.r. and u.v. spectral studies. The 13Cn.m.r. spectrum of one of the Schiff base ligands has been recorded. The results show that the ligand is coordinated to the central metal ion via amide nitrogen, imino nitrogen, phenolic oxygen and carboxyl oxygen to form a quadridentate complexes. Some of the complexes exhibit strong inhibitory action towards Candida albicans and Cryptococcus neoformans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号