首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129603篇
  免费   20129篇
  国内免费   15193篇
化学   90645篇
晶体学   1489篇
力学   7273篇
综合类   1018篇
数学   16553篇
物理学   47947篇
  2024年   400篇
  2023年   2394篇
  2022年   4397篇
  2021年   4803篇
  2020年   5049篇
  2019年   4808篇
  2018年   4463篇
  2017年   4094篇
  2016年   6114篇
  2015年   6076篇
  2014年   7465篇
  2013年   9610篇
  2012年   11464篇
  2011年   11836篇
  2010年   8339篇
  2009年   8051篇
  2008年   8568篇
  2007年   7722篇
  2006年   7204篇
  2005年   6021篇
  2004年   4844篇
  2003年   3772篇
  2002年   3496篇
  2001年   2861篇
  2000年   2456篇
  1999年   2504篇
  1998年   2076篇
  1997年   1899篇
  1996年   1871篇
  1995年   1619篇
  1994年   1479篇
  1993年   1175篇
  1992年   1034篇
  1991年   910篇
  1990年   777篇
  1989年   589篇
  1988年   460篇
  1987年   414篇
  1986年   388篇
  1985年   318篇
  1984年   233篇
  1983年   190篇
  1982年   152篇
  1981年   98篇
  1980年   86篇
  1979年   41篇
  1978年   31篇
  1976年   32篇
  1975年   36篇
  1957年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   
72.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
73.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   
74.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   
75.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
76.
The viscosities of aqueous solutions of gelatin at different temperatures were carefully measured in a common glass‐capillary Ubbelohde viscometer at dilute to extremely dilute concentrations. The adsorption effect that occurred in the viscosity measurements was theoretically analyzed and discussed. A theory based on Langmuir isotherms could adequately describe the existing data. Some structural information was obtained by the use of an iterative fitting procedure to treat the reduced viscosity data, which disclosed that individual gelatin chains underwent a coil‐to‐helix transition as the solution cooled from 40 to 15 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1804–1812, 2006  相似文献   
77.
A series of crystals of phenyl‐capped tetraaniline in the leucoemeraldine oxidation state were obtained at different isothermal temperatures and were observed directly under transmission electron microscope. The crystals obtained at higher temperatures exhibit more perfect structures than those obtained at lower temperatures. Both the lamella thickness and the crystal size increase with crystallization temperature. The tetraaniline is apt to form larger scale crystals under lower degree of supercooling. However, their crystal structures keep steady with the crystallization temperature. The tetramer was found to adopt a monoclinic lattice with unit cell parameter of a = 13.93 Å, b = 8.82 Å, c = 23.20 Å, and β = 95.03°, as determined using electron diffraction tilting method combined with wide‐angle X‐ray diffraction experiment. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 764–769, 2006  相似文献   
78.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006  相似文献   
79.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   
80.
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号