首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193796篇
  免费   38402篇
  国内免费   30068篇
化学   131142篇
晶体学   2404篇
力学   11606篇
综合类   1034篇
数学   24137篇
物理学   91943篇
  2024年   743篇
  2023年   2816篇
  2022年   4702篇
  2021年   4949篇
  2020年   5418篇
  2019年   5724篇
  2018年   5341篇
  2017年   5544篇
  2016年   7584篇
  2015年   7852篇
  2014年   8984篇
  2013年   12746篇
  2012年   14508篇
  2011年   16149篇
  2010年   16365篇
  2009年   16323篇
  2008年   10973篇
  2007年   9795篇
  2006年   9031篇
  2005年   8193篇
  2004年   7849篇
  2003年   6402篇
  2002年   6069篇
  2001年   5824篇
  2000年   4623篇
  1999年   4851篇
  1998年   3965篇
  1997年   3596篇
  1996年   3909篇
  1995年   4099篇
  1994年   4053篇
  1993年   3854篇
  1992年   3398篇
  1991年   2887篇
  1990年   2431篇
  1989年   2374篇
  1988年   2196篇
  1987年   1484篇
  1986年   1535篇
  1985年   1149篇
  1984年   1176篇
  1983年   513篇
  1982年   1016篇
  1981年   823篇
  1980年   833篇
  1979年   555篇
  1978年   563篇
  1977年   657篇
  1976年   1071篇
  1972年   539篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Based on the complexation between proteins and Cu(II) coupled with the time-resolved chemiluminescence (CL) technique, a highly sensitive and quantitative assay for measuring proteins in solution is described. The complexes of proteins with Cu(II) have a strongly catalytic effect on the luminol-H2O2 CL reaction. Because the CL emission produced by the complexes is much more long-lived than that by Cu(II), the CL signals originating from proteins can be easily identified and measured with a time-resolved technique. On this basis, bovine albumin fraction V (BAF V) can be quantitatively determined in the range of 0.01 - 5.0 microg/ml with a detection limit of 5.8 ng/ml. The results show that the proposed assay exhibits a small variation in the response values for the same amount of different proteins, as compared to the Lowry as well as Bradford assays. The CL assay has also been studied for the detection of immobilized proteins.  相似文献   
42.
A Nafion-modified glassy carbon electrode incorporated with tobramycin for the voltammetric stripping determination of Cu2+ has been explored. The electrode was fabricated by tobramycin containing Nafion on the glassy carbon electrode surface. The modified electrode exhibited a significantly increased sensitivity and selectivity for Cu2+ compared with a bare glassy carbon electrode and the Nafion modified electrode. Cu2+ was accumulated in HAc-NaAc buffer (pH 4.6) at a potential of -0.6 V (vs. SCE) for 300 s and then determined by differential pulse anodic stripping voltammetry. The effects of various parameters, such as the mass of Nafion, the concentration of tobramycin, the pH of the medium, the accumulation potential, the accumulation time and the scan rate, were investigated. Under the optimum conditions, a linear calibration graph was obtained in the concentration range of 1.0 x 10(-9) to 5.0 x 10(-7) mol l(-1) with a correlation coefficient of 0.9971. The relative standard deviations for eight successive determinations were 4.3 and 2.9% for 1.0 x 10(-8) and 2.0 x 10(-7) mol l(-1) Cu2+, respectively. The detection limit (three times signal to noise) was 5.0 x 10(-10) mol l(-1). A study of interfering substances was also performed, and the method was applied to the direct determination of copper in water samples, and also in analytical reagent-grade salts with satisfactory results.  相似文献   
43.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
44.
Photon correlation spectroscopy and freeze-fracture electron microscopy have been used to determine the ability of a range of micelle-forming, polyoxyethylene (20) sorbitan monoesters (Tweens) to solubilise vesicles prepared from phosphatidylcholines of different acyl chain lengths and degrees of saturation with a view to rationalising (in terms of their membrane toxicity) which of the micelle-forming surfactants to use as drug delivery vehicles. The phosphatidylcholines used were dimyristoyl-, dipalmitoyl-, distearoyl- and dioleoylphosphatidylcholine (DMPC, DPPC, DSPC and DOPC, respectively) while the nonionic polyoxyethylene sorbitan monoesters studied were polyoxyethylene (20) sorbitan monolaurate (Tween 20), a 9:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 40), a 1:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 60), and polyoxyethylene (20) sorbitan monooleate (Tween 80). The ability of the Tween micelles to solubilise phospholipid vesicles was found to depend both upon the length of the surfactant acyl chain and the length of the acyl chains of the phospholipid comprising the vesicle. Vesicles composed of long saturated diacyl chain phospholipids, namely DSPC and DPPC, were the most resistant to solubilisation, while those prepared from the shorter acyl chained DMPC were more readily solubilised. In terms of their solubilisation behaviour, vesicles made from phospholipids containing long, unsaturated acyl chains, namely DOPC behaved more akin to those vesicles prepared from DMPC. None of the Tween surfactants were effective at solubilising vesicles prepared from DPPC or DSPC. In contrast, there were clear differences in the ability of the various surfactants to solubilise vesicles prepared from DMPC and DOPC, in that micelles formed from Tween 20 were the most effective solubilising agent while those formed by Tween 60 were the least effective. As a consequence of these observations it was considered that Tween 60 was the surfactant least likely to cause membrane damage in vivo and, therefore, is the most suitable surfactant for use as a micellar drug delivery vehicle.  相似文献   
45.
Fingering instabilities are observed at the contact line of drops of surfactant solutions spreading spontaneously on solid surfaces coated by a film of solvent. The occurrences of instabilities, and the characteristics of the instability pattern, are controlled by the surfactant concentration and the thickness of the film adsorbed or deposited on the substrate. This work provides experimental data as a basis for forthcoming theoretical analyses.  相似文献   
46.
To prevent cyanobacterial bloom in eutrophic water by ultrasonic method, ultrasonic irradiations with different parameters were tested to inhibit Spirulina platensis from growth. The experimental result based on cyanobacterial growth, chlorophyll a and photosynthetic activity showed that, the ultrasonic irradiation inhibited cyanobacterial proliferation effectively, furthermore the inhibition effectiveness increased in the order: 200 kHz>1.7 MHz>20 kHz and became saturated with the increased power. The inhibition mechanism can be mainly attributed to the mechanical damage to the cell structures caused by ultrasonic cavitation, which was confirmed by light microscopy and differential interference microscopy. The optimal frequency of 200 kHz in cavition and sonochemistry was also most effective in cyanobacterial growth inhibition. The higher frequency of 1.7 MHz is weaker than 20 kHz in cavitation, but has more effective inhibition because it is nearer to the resonance frequency of gas vesicle. The inhibition saturation with ultrasonic power was due to the ultrasonic attenuation induced by the acoustic shielding of bubbles enclosing the radiate surface of transducer.  相似文献   
47.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   
48.
Fixed‐site–carrier membranes were prepared for the facilitated transport of CO2 by casting polyvinylamine (PVAm) on various supports, such as poly(ether sulfone) (PES), polyacrylonitrile (PAN), cellulose acetate (CA), and polysulfone (PSO). The cast PVAm on the support was crosslinked by various methods with glutaraldehyde, hydrochloric acid, sulfuric acid, and ammonium fluoride. Among the membranes tested, the PVAm cast on polysulfone and crosslinked by ammonium fluoride showed the highest selectivity of CO2 over CH4 (>1000). The permeance of CO2 was then measured to be 0.014 m3 (STP)/(m2 bar h) for a 20 μm thick membrane. The effect of the molecular weight of PVAm and feed pressure on the permeance was also investigated. The selectivity increased remarkably with increasing molecular weight and decreased slightly with increased pressure in the range of 1 to 4 bar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4326–4336, 2004  相似文献   
49.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
50.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号