首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学   12篇
力学   1篇
数学   13篇
物理学   17篇
  2020年   1篇
  2019年   2篇
  2015年   1篇
  2011年   3篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1991年   2篇
  1988年   2篇
  1987年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
11.
Reversed micelles and water in oil micro-emulsions can be used to solubilize biopolymers and genetic materials allowing analyzing their properties in a confined geometry. Nuclear Magnetic Resonance Dispersion (NMRD) provides a powerful and a noninvasive experimental technique to probe the long-term dynamics of these confined systems. However, the first step is to analyze and understand the slow dynamics of water inside these micro-reactors without any guest molecule. This is the aim of this presentation. Experimental results have been obtained for deuteron 2H NMRD of water confined in reverse micelles of bis (2-ethylhexyl) sodium sulfosuccinate (AOT) dispersed in isooctane C8H18. The water content is expressed as the molar ratio W0 = [Water]/[AOT]. The radius of the spherical reversed micelles, Rm, increases almost linearly with W0. In our case, W0 is chosen in the range 20  W0  50 (35  Rm  80 Å). The frequency dependence for the spin-lattice relaxation rate R1(ω) exhibits two regimes, for all W0 values: a plateau at low frequency, proportional to 1/Rm, followed by the beginning of an algebraic decay. These experimental observations are discussed and compared to a numerical simulation of the intermittent Brownian diffusion of a water molecule inside a rotating reverse micelle. The possibility to probe some properties of the confinement, such as the localisation time on the sulfonated palisade and/or the water self-diffusion inside the water pool is emphasised.  相似文献   
12.
In this article, we present a general overview of the organization of colloidal charged clay particles in aqueous suspension by studying different natural samples with different structural charges and charge locations. Small-angle X-ray scattering experiments (SAXS) are first used to derive swelling laws that demonstrate the almost perfect exfoliation of clay sheets in suspension. Using a simple approach based on geometrical constraints, we show that these swelling laws can be fully modeled on the basis of morphological parameters only. The validity of this approach was further extended to other clay data from the literature, in particular, synthetic Laponite. For all of the investigated samples, experimental osmotic pressures can be properly described by a Poisson-Boltzmann approach for ionic strength up to 10(-3) M, which reveals that these systems are dominated by repulsive electrostatic interactions. However, a detailed analysis of the Poisson-Boltzmann treatment shows differences in the repulsive potential strength that are not directly linked to the structural charge of the minerals but rather to the charge location in the structure for tetrahedrally charged clays (beidellite and nontronites) undergoing stronger electrostatic repulsions than octahedrally charged samples (montmorillonites, laponite). Only minerals subjected to the strongest electrostatic repulsions present a true isotropic to nematic phase transition in their phase diagrams. The influence of ionic repulsions on the local order of clay platelets was then analyzed through a detailed investigation of the structure factors of the various clay samples. It appears that stronger electrostatic repulsions improve the liquidlike positional local order.  相似文献   
13.
we have established experimentally the region of existence of smectic and sponge lyotropic microstructures in the presence of synthetic hydrophilic clay particles. Taking into account the adsorption isotherm, we determined the extension of the single-phase regions by visual inspection and looking at low-q behaviour of the small-angle neutron scattering. Conditions of stability such as geometric constraints associated with fluctuation quenching are discussed. Received 11 December 2000 and Received in final form 11 April 2001  相似文献   
14.
15.
Ohne Zusammenfassung Diese Arbeit wurde von demOffice of Scientific Research of the United States Air Force unterstützt.  相似文献   
16.
17.
18.
19.
20.
The phase behavior of a natural nontronite clay was studied for size-selected particles by combining osmotic pressure measurements, visual observations under polarized light, and rheological experiments. In parallel, the positional and orientational correlations of the particles were analyzed by small-angle X-ray scattering. Aqueous suspensions of nontronite exhibit a true isotropic/nematic (I/N) transition that occurs before the sol/gel transition, for ionic strengths below 10(-3) M/L. In this region of the phase diagrams, the system appears to be purely repulsive. The I/N transition shifts toward lower volume fractions for increasing particle anisotropy, and its position in the phase diagram agrees well with the theoretical predictions for platelets. SAXS measurements reveal the presence of characteristic interparticular distances in the isotropic, nematic, and gel phases. The swelling law (separation distance vs swelling law) exhibits two regimes. For high volume fractions, the swelling law is one-dimensional as in layered systems and reveals the presence of isolated platelets. At lower volume fraction, distances scale as phi(-1/3), indicating isotropic volumic swelling. Finally, the experimental osmotic pressure curves can be satisfactorily reproduced by considering the interparticle distances between two charged planes whose effective charge is around 10% of the structural charge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号