首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1218篇
  免费   47篇
  国内免费   21篇
化学   663篇
晶体学   10篇
力学   58篇
数学   260篇
物理学   295篇
  2023年   5篇
  2022年   13篇
  2021年   5篇
  2020年   24篇
  2019年   11篇
  2018年   13篇
  2017年   5篇
  2016年   17篇
  2015年   20篇
  2014年   43篇
  2013年   63篇
  2012年   85篇
  2011年   68篇
  2010年   59篇
  2009年   55篇
  2008年   70篇
  2007年   61篇
  2006年   75篇
  2005年   56篇
  2004年   50篇
  2003年   51篇
  2002年   32篇
  2001年   35篇
  2000年   33篇
  1999年   14篇
  1998年   20篇
  1997年   12篇
  1996年   16篇
  1995年   23篇
  1994年   10篇
  1993年   19篇
  1992年   9篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   10篇
  1987年   9篇
  1986年   8篇
  1985年   20篇
  1984年   11篇
  1983年   10篇
  1982年   9篇
  1981年   9篇
  1980年   12篇
  1979年   11篇
  1978年   7篇
  1977年   14篇
  1976年   15篇
  1975年   14篇
  1973年   4篇
排序方式: 共有1286条查询结果,搜索用时 15 毫秒
101.
102.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
103.
A novel pyropheophorbide‐a (PPa) derivative, Ac‐sPPp, was developed in our lab for targeted photodynamic therapy (PDT) and combination therapies. Its versatile peptide moiety, high water‐solubility, amphiphilicity, and micellar aggregation allow efficient coupling to targeting moieties and convenient mixing with other therapeutics. Photosensitizer immunoconjugate (PIC) targeted PDT, using Ac‐sPPp conjugated to therapeutic anti‐epidermal growth factor receptor (EGFR) antibody cetuximab, and PDT + chemotherapy combination treatment, using Ac‐sPPp mixed with stealth liposomal doxorubicin (Doxil), were investigated as promising strategies for potentiating PDT and improving target specificity. Passively targeted PDT with Ac‐sPPp only or surfactant‐solubilized PPa was also investigated for comparison. The A‐431 human vulvar squamous cell carcinoma, xenografted in nude mice, was chosen as a tumor model because of its high EGFR expression and sensitivity to liposomal doxorubicin in vitro. Fluorescence imaging and PDT experiments showed that Ac‐sPPp formulations circulated far longer and provided superior tumor contrast and superior tumor control compared to PPa. Strong PDT vascular effects were observed by laser Doppler imaging regardless of whether Ac‐sPPp was passively or actively targeted. Passively targeted Ac‐sPPp PDT gave equivalent or better tumor control than PIC‐targeted PDT or PDT + Doxil combination therapy, and when treatments were repeated, it also yielded the highest cure rate.  相似文献   
104.
Treatment of [M(Buppy)2Cl]2 (M=Ir (1), Rh (2); BuppyH=2-(4-tert-butylphenyl)pyridine) with Na(Et2NCS2), K[S2P(OMe)2], and K[N(Ph2PS)2]2 afforded monomeric [Ir(Buppy)2(SS)] (SS=Et2NCS2 (3), S2P(OMe)2 (4), N(PPh2S)2 (5)) and [Rh(Buppy)2(SS)] (SS=Et2NCS2 (6), S2P(OMe)2 (7), N(PPh2S)2 (8)), respectively. Reaction of 1 with Na[N(PPh2Se)2] gave [Ir(Buppy)2{N(PPh2Se)2}] (9). The crystal structures of 3, 4, 7, and 8 have been determined. Treatment of 1 or 2 with AgOTf (OTf=triflate) followed by reaction with KSCN gave dinuclear [{M(Buppy)2}2(μ-SCN)2] (M=Ir (10), Rh (11)), in which the SCN ligands bind to the two metal centers in a μ-S,N fashion. Interaction of 1 and 2 with [Et4N]2[WQ4] gave trinuclear heterometallic complexes [{Ir(Buppy)2}2(μ-WQ4)] (Q=S (12), Se (13)) and [{Rh(Buppy)2}2{(μ-WQ)4}] (Q=S (14), Se (15)), respectively. Hydrolysis of 12 led to formation of [{Ir(Buppy)2}2{W(O)(μ-S)23-S)}] (16) that has been characterized by X-ray diffraction.  相似文献   
105.
106.
A supramolecular metal-ligand assembly encapsulates a variety of cationic half-sandwich ruthenium complexes. Due to the chirality of both host and guest, chiral recognition is observed with diastereomeric excesses up to 70%. The chiral cavity can be used to carry out a dynamic resolution of the rapidly equilibrating enantiomers of the chiral organometallic guest.  相似文献   
107.
Herein is described the development of a novel switch-on fluorescence assay for detecting β-lactamases. The fluorescence assay comprises two components: solid beads coated with a β-lactam antibiotic, which is linked to an environment-sensitive fluorophore (dansylaminothiophenol, DTA), and amyloid fibrils of hen lysozyme (acting as fluorescence enhancer and visual tool). In the presence of the clinically significant TEM-1 β-lactamase, the DTA-antibiotic complex on the solid beads is hydrolyzed, thus releasing the DTA dye into solution. The DTA dye is only weakly fluorescent in solution but gives strong green fluorescence upon binding to lysozyme fibrils. These strongly fluorescent DTA-bound fibrils can be easily visualized by the naked eye upon illumination of the sample with a simple UV lamp. The fluorescence assay can detect TEM-1 at low concentration (0.01 nM). In contrast, no observable fluorescence appears when the fluorescence assay is performed on samples without the TEM-1 β-lactamase.  相似文献   
108.
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities.  相似文献   
109.
This paper describes the application of gas chromatography–mass spectrometry (GC‐MS) for in vitro and in vivo studies of 6‐OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6‐OXO in racehorses. In vitro studies of 6‐OXO were performed using horse liver microsomes. The major biotransformation observed was reduction of one keto group at the C3 or C6 positions. Three in vitro metabolites, namely 6α‐hydroxyandrost‐4‐ene‐3,17‐dione (M1), 3α‐hydroxyandrost‐4‐ene‐6,17‐dione (M2a) and 3β‐hydroxyandrost‐4‐ene‐6,17‐dione (M2b) were identified. For the in vivo studies, two thoroughbred geldings were each administered orally with 500 mg of androst‐4‐ene‐3,6,17‐trione (5 capsules of 6‐OXO®) by stomach tubing. The results revealed that 6‐OXO was extensively metabolized. The three in vitro metabolites (M1, M2a and M2b) identified earlier were all detected in post‐administration urine samples. In addition, seven other urinary metabolites, derived from a further reduction of either one of the remaining keto groups or one of the remaining keto groups and the olefin group, were identified. These metabolites included 6α,17β‐dihydroxyandrost‐4‐en‐3‐one (M3a), 6,17‐dihydroxyandrost‐4‐en‐3‐one (M3b and M3c), 3β,6β‐dihydroxyandrost‐4‐en‐17‐one (M4a), 3,6‐dihydroxyandrost‐4‐en‐17‐one (M4b), 3,6‐dihydroxyandrostan‐17‐one (M5) and 3,17‐dihydroxyandrostan‐6‐one (M6). The longest detection time observed in urine was up to 46 h for the M6 metabolite. For blood samples, the peak 6‐OXO plasma concentration was observed 1 h post administration. Plasma 6‐OXO decreased rapidly and was not detectable 12 h post administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
110.
The absorption spectrum of NiI between 445 and 510 nm has been investigated using the technique of laser vaporization/reaction with free jet expansion and cavity ring down laser absorption spectroscopy. Two new transitions namely,[21.3]^2△5/2-X^2△5/2 and [21.9]^2Ⅱ3/2-X^2△5/2 systems were identified and studied. Spectra of both ^58NiI and ^60NiI isotopic molecules were observed. Equilibrium molecular constants for both electronic states are reported and the equilibrium bond length for the [21.3]^2△5/2 state and the[21.9]^2Ⅱ3/2 state was respectively determined to be 2.431 and 2.481 A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号