首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2074篇
  免费   46篇
  国内免费   6篇
化学   1021篇
晶体学   14篇
力学   110篇
数学   402篇
物理学   579篇
  2023年   10篇
  2022年   25篇
  2021年   42篇
  2020年   46篇
  2019年   56篇
  2018年   45篇
  2017年   56篇
  2016年   80篇
  2015年   47篇
  2014年   72篇
  2013年   126篇
  2012年   117篇
  2011年   139篇
  2010年   100篇
  2009年   88篇
  2008年   119篇
  2007年   100篇
  2006年   90篇
  2005年   94篇
  2004年   69篇
  2003年   67篇
  2002年   58篇
  2001年   23篇
  2000年   24篇
  1999年   36篇
  1998年   27篇
  1997年   31篇
  1996年   24篇
  1995年   27篇
  1994年   20篇
  1993年   17篇
  1992年   13篇
  1991年   18篇
  1990年   22篇
  1989年   14篇
  1988年   12篇
  1987年   14篇
  1986年   10篇
  1985年   11篇
  1984年   11篇
  1982年   14篇
  1981年   10篇
  1980年   8篇
  1979年   13篇
  1977年   10篇
  1973年   5篇
  1969年   10篇
  1968年   5篇
  1967年   5篇
  1938年   7篇
排序方式: 共有2126条查询结果,搜索用时 359 毫秒
101.
The direct simulation Monte Carlo method is used to numerically simulate the problem of the shock wave front in vibrationally excited hydrogen flowing in the low-pressure channel of a shock tube. It is assumed that the vibrational temperature of the hydrogen equals 3000 K. The cases of partially and completely excited hydrogen are considered. Equilibrium hydrogen is applied as a pusher gas, but its concentration is 50 times higher than the hydrogen concentration in the low-pressure channel. In addition, the strength of the shock wave is varied by heating the pusher gas. It has been shown that, if the prestored vibrational energy is weakly converted to translational energy, the shock wave slows down over time. If the energy conversion is sufficiently intense, when the pusher gas is warm and only completely vibrationally excited hydrogen is in the low-pressure channel, the wave gains speed over time (its velocity increases roughly by a factor of 1.5). This causes physical detonation, in which case the parameters of the wave become dependent on the vibrational-to-thermal energy conversion and independent of the way of its initiation.  相似文献   
102.
Reconstruction the phase front of a vortex laser beam is conducted by use of a Hartmann-Shack wavefront sensor. The vortex beam in the form of the Laguerre-Gaussian LG(0)(1) mode is generated with the help of a spiral phase plate. The new reconstruction technique based on measured wavefront gradients allows one to restore the singular phase surface with good accuracy, whereas the conventional least-squares approach fails.  相似文献   
103.
Moscow University Chemistry Bulletin - The conditions for the preparation of astaxanthin ester aggregates are optimized, and their physicochemical characteristics (size and absorption spectra) are...  相似文献   
104.
Based on the results from previous high-pressure experiments on the gadolinite-type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates β-HfB2O5 and β-ZrB2O5 have been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction experiments. On compression to 120 GPa, both borate layer-structures are preserved. Additionally, at ≈114 GPa, the formation of a second phase can be observed in both compounds. The new high-pressure modification γ-ZrB2O5 features a rearrangement of the corner-sharing BO4 tetrahedra, while still maintaining the four- and eight-membered rings. The new phase γ-HfB2O5 contains ten-membered rings including the rare structural motif of edge-sharing BO4 tetrahedra with exceptionally short B−O and B⋅⋅⋅B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low-energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.  相似文献   
105.
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.  相似文献   
106.
The applications of zerovalent iron nanoparticles (nZVI) exploit their high reactivity which decreases due to oxidation in aerobic conditions during manufacture, application, and storage. In this study, we present the new procedure for estimation of the nZVI stability to oxidation in air. The procedure is suitable for characterization of the novel materials based on the supported nZVI. Nanoscale particles were synthesized inside porous silica supports by incipient wetness impregnation with the metal precursor solutions followed by thermal treatment. The TG–DTA studies revealed the decomposition temperature of the supported precursors, as well as the interaction of Fe and precious metal precursors, which resulted in the formation of alloy nanoparticles. Characterization of the samples by XRD confirmed the formation of the nanoparticles of the metallic Pd, Pt, and Fe phases supported on SiO2 carriers, as well as the formation of solid solutions based on the structure of precious metals. The new procedure for estimation of the nZVI stability included (1) TPR with hydrogen up to 400–425 °C followed by isothermal reduction at these temperatures; (2) in situ reoxidation with oxygen at room temperature. The samples were reduced “as obtained” and after in situ reoxidation. The results of the TPR studies exhibited that introduction of both Pd and Pt protected the Fe nanoparticles from oxidation with oxygen and air at ambient conditions.  相似文献   
107.
Crystal structure parameters of the mixed cobaltite–chromite SmCo0.5Cr0.5O3 in the temperature range of 298–1173 K were derived from in situ high-resolution X-ray synchrotron powder diffraction data. Similar to the parent SmCoO3 compound, SmCo0.5Cr0.5O3 reveals anomalous thermal expansion reflected in abnormal temperature dependence of the unit cell dimensions and the selected interatomic distances and angles. These anomalies are associated with temperature induced changes of spin state of Co3+ ions and coupled insulator-metal transition. Observed decreasing behavior of the bandwidth W points on the increasing population of the exited spin states of Co3+ ions in SmCo0.5Cr0.5O3 with increasing temperature. First principle calculations revealed antiferromagnetic ground state of SmCo0.5Cr0.5O3 as the most stable.  相似文献   
108.
In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.  相似文献   
109.
Owing to its outstanding elastic properties, the nitride spinel γ‐Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4‐analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite‐type BeP2N4 by single‐crystal synchrotron X‐ray diffraction and report the phase transition into the spinel‐type phase at 47 GPa and 1800 K in a laser‐heated diamond anvil cell. The structure of spinel‐type BeP2N4 was refined from pressure‐dependent in situ synchrotron powder X‐ray diffraction measurements down to ambient pressure, which proves spinel‐type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel‐type BeP2N4 is an ultraincompressible material.  相似文献   
110.
Hydrodesulphurization, the removal of sulphur from crude oils, is an essential catalytic process in the petroleum industry safeguarding the production of clean hydrocarbons. Sulphur removal is critical for the functionality of downstream processes and vital to the elimination of environmental pollutants. The effectiveness of such an endeavour is among other factors determined by the structural arrangement of the heterogeneous catalyst. Namely, the accessibility of the catalytically active molybdenum disulphide (MoS2) slabs located on the surfaces of a porous alumina carrier. Here, we examined a series of pristine sulfided Mo and NiMo hydrodesulphurization catalysts of increasing metal loading prepared on commercial alumina carriers using ptychographic X‐ray computed nanotomography. Structural analysis revealed a build consisting of two interwoven support matrix elements differing in nanoporosity. With increasing metal loading, approaching that of industrial catalysts, these matrix elements exhibit a progressively dissimilar MoS2 surface coverage as well as MoS2 cluster formation at the matrix element boundaries. This is suggestive of metal deposition limitations and/ or catalyst activation and following prohibitive of optimal catalytic utilization. These results will allow for diffusivity calculations, a better rationale of current generation catalyst performance as well as a better distribution of the active phase in next‐generation hydrodesulphurization catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号