首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   15篇
化学   366篇
力学   16篇
数学   44篇
物理学   77篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   15篇
  2014年   12篇
  2013年   18篇
  2012年   30篇
  2011年   32篇
  2010年   26篇
  2009年   12篇
  2008年   31篇
  2007年   25篇
  2006年   32篇
  2005年   31篇
  2004年   18篇
  2003年   19篇
  2002年   24篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1986年   2篇
  1985年   10篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   10篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   8篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1911年   2篇
排序方式: 共有503条查询结果,搜索用时 0 毫秒
11.
The extracellular β-xylosidase (EC 3.2.1.37) excreted by the thermophilic eubacteriumRhodothermus marinus when grown on xylan has been investigated. The enzyme has been partially purified by ultrafiltration and gel filtration, and some of its characteristics are presented.Rhodothermus marinus grew on xylan with μmax= 0.4 h? and the α-xylosidase activity was 50 nkat/mL after 24 h in a batch fermentation. The α-xylosidase activity had a half-life of more than 1 h at 90°C and of 14 h at 85 °C. At 80°C, 80% of the initial activity remained after 24 h. The initial activity increased with increasing temperature, showing maximal activity at 90°C. The β-xylosidase had a pH-optimum of 6 and was stable in the range between pH 5 and 9. At pH 10 and 11, 82 and 66%, respectively, of the initial activity remained after 24 h when incubated at 65°C. The molecular weight was estimated to be 169,000 dalton by gelfiltration.  相似文献   
12.
The use of light to drive proton-coupled electron transfer (PCET) reactions has received growing interest, with recent focus on the direct use of excited states in PCET reactions (ES-PCET). Electrostatic ion pairs provide a scaffold to reduce reaction orders and have facilitated many discoveries in electron-transfer chemistry. Their use, however, has not translated to PCET. Herein, we show that ion pairs, formed solely through electrostatic interactions, provide a general, facile means to study an ES-PCET mechanism. These ion pairs formed readily between salicylate anions and tetracationic ruthenium complexes in acetonitrile solution. Upon light excitation, quenching of the ruthenium excited state occurred through ES-PCET oxidation of salicylate within the ion pair. Transient absorption spectroscopy identified the reduced ruthenium complex and oxidized salicylate radical as the primary photoproducts of this reaction. The reduced reaction order due to ion pairing allowed the first-order PCET rate constants to be directly measured through nanosecond photoluminescence spectroscopy. These PCET rate constants saturated at larger driving forces consistent with approaching the Marcus barrierless region. Surprisingly, a proton-transfer tautomer of salicylate, with the proton localized on the carboxylate functional group, was present in acetonitrile. A pre-equilibrium model based on this tautomerization provided non-adiabatic electron-transfer rate constants that were well described by Marcus theory. Electrostatic ion pairs were critical to our ability to investigate this PCET mechanism without the need to covalently link the donor and acceptor or introduce specific hydrogen bonding sites that could compete in alternate PCET pathways.

Electrostatic ion pairs provide a general method to study excited-state proton-coupled electron transfer. A PTaETb mechanism is identified for the ES-PCET oxidation of salicylate within photoexcited cationic ruthenium–salicylate ion pairs.  相似文献   
13.
A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.  相似文献   
14.
To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these complexes, a mixed-valent dinuclear Ru2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru(II) tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru2(II,III) and Ru2(III,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)3]2+ photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bpy)3]2+ moiety to the conduction band of TiO2 followed by intramolecular electron transfer from the dinuclear Ru2(II,III) moiety to photogenerated Ru(III) was observed. The resulting long-lived Ru2(III,III) state decays on the millisecond timescale.  相似文献   
15.
Nuclear emulsions processed in discriminating developers, intended to suppress small latent image sites, exhibit supralinear sensitometric blackness-exposure curves, whose character varies according to developing time, concentration, and composition, yielding hittedness ranging from 1 to 8, singly and in combination. These emulsion-processing combinations display the phenomena called ion-kill (sensitization by the transit of a single charged particle) and gamma- kill (sensitization by the overlap of secondary electron paths, whether from x-rays or from the delta-rays of heavy ions) in radiobiology. Here emulsions are blackened by x-rays when these same plates reveal no electron tracks, or no alpha-particle tracks, or even no fission fragment tracks. The supralinearity of the emulsion response to x-rays, and the consequent suppression of low LET radiations suggest that these materials have the potential to mimic the response of biological systems to particulate radiations of different charge and speed.  相似文献   
16.
Reviews     
Man's Impact on the Global Environment. Assessments and Recommendations for Action. Report of the 'Study of Criterial Environmenta Problems'. (SCEP). MIT Press 1970, 319 pages. Price $2.95.

Field Ion Microscopy K. M. Bowkett and D. A. Smith In the series: Defects in Crystalline Solids. North Holland Publishing Company 1970, 257 pages.  相似文献   
17.
Benzylation of 1,2-ditosylhydrazine in DMF under various basic conditions results in a benzyl sulfone via intermediary sulfinate formation, providing new insights and allowing practical conclusions to be drawn. The half-lives of 1,2-ditosylhydrazine and several monotosylated hydrazides with 1,1,3,3-tetramethylguanidine in DMSO have been determined by 1H NMR spectroscopy and are found to vary from a few minutes to several months. In the course of this work a benzylated, partly detosylated compound has been identified and a 1,1,3,3-tetramethyl guanidine-containing side-product characterized. A contradictory report is also commented on.  相似文献   
18.
Recently, rotational spectroscopy in the radio frequency range was used to determine the bond lengths in several types of potassium Rydberg Matter (RM) clusters with high precision (Mol Phy 105: 933–939, 2007). Due to the large bond lengths of a few nm and well-ordered structure of such clusters, it is expected that light scattering can be used to determine their dimensions. A weak carbon dioxide laser beam is introduced collinearly into a tunable RM cavity. When RM is formed, a very pronounced fringe structure with several hundred fringes is observed at the detector as a function of the grating position. These fringes show a phase delay of the carbon dioxide laser light caused by reflections within the RM clusters. The delay lengths derived from the fringe structure give distances between the rows of atoms in the clusters. The excitation level of the most easily observed clusters is n = 5. Clusters with n = 6, 7, and 8 are also commonly detected. The bond distance for n = 5 is found to be 3.804 ± 0.015 nm, while that for n = 6 is 5.525 ± 0.014 nm, in accurate agreement with values from rotational spectroscopy.  相似文献   
19.
Caged xenon has great potential in overcoming sensitivity limitations for solution‐state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed‐bed bioreactor working under perfusion with hyperpolarized‐xenon‐saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell‐associated versus unbound cages. We present MR images with 103‐fold sensitivity enhancement for cell‐internalized, dual‐mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号