首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35030篇
  免费   1598篇
  国内免费   691篇
化学   23297篇
晶体学   345篇
力学   1344篇
综合类   47篇
数学   3272篇
物理学   9014篇
  2023年   267篇
  2022年   611篇
  2021年   771篇
  2020年   681篇
  2019年   704篇
  2018年   586篇
  2017年   566篇
  2016年   1078篇
  2015年   892篇
  2014年   1167篇
  2013年   2022篇
  2012年   2566篇
  2011年   2785篇
  2010年   1781篇
  2009年   1595篇
  2008年   2283篇
  2007年   2124篇
  2006年   1966篇
  2005年   1789篇
  2004年   1563篇
  2003年   1225篇
  2002年   1199篇
  2001年   823篇
  2000年   706篇
  1999年   468篇
  1998年   361篇
  1997年   384篇
  1996年   414篇
  1995年   328篇
  1994年   325篇
  1993年   330篇
  1992年   315篇
  1991年   258篇
  1990年   180篇
  1989年   164篇
  1988年   163篇
  1987年   139篇
  1986年   110篇
  1985年   184篇
  1984年   128篇
  1983年   106篇
  1982年   133篇
  1981年   93篇
  1980年   84篇
  1978年   82篇
  1977年   89篇
  1976年   96篇
  1975年   104篇
  1974年   82篇
  1973年   106篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH(3)-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH(3)-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order M?ller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix.  相似文献   
912.
Ye Y  Lee SH  Sanford MS 《Organic letters》2011,13(20):5464-5467
The silver-mediated C-H trifluoromethylation of aromatic substrates using TMSCF(3) is described. The development, optimization, and scope of these transformations are reported. AgCF(3) intermediates are proposed.  相似文献   
913.
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy- 2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-α) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-α , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.  相似文献   
914.
Lee J  Ryoo SR  Kim SK  Ahn JH  Min DH  Yeo WS 《Analytical sciences》2011,27(11):1127-1131
We report on a novel method for the quantitation of proteins specifically bound on a ligand-presenting biochip by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The bound protein was digested by trypsin, and the resulting peptide fragments were analyzed by MALDI-TOF MS in the presence of an isotope-labeled internal standard (IS). The IS has the same sequence as a reference peptide (RP) of the target protein digest, but a different molecular weight. The absolute amount of the specifically bound protein on a biochip is then quantitated by comparison of mass intensities between the RP and the IS. Because they have the same molecular milieu, the mass intensities of these two analytes represent the real amounts of analytes on the chip. As a model system, we tested glutathione s-transferase (GST) and a GST-fusion protein, which were captured on glutathione-presenting biochips. We observed that the glutathione densities on biochips showed a good correlation with the absolute quantity of the proteins. We believe that our method will provide an alternative to currently existing tools for the absolute quantitation of surface-bound proteins.  相似文献   
915.
We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively.  相似文献   
916.
Some metal ion complexing properties of the ligand PDAM (1,10-phenanthroline-2,9-dicarboxamide) in aqueous solution are reported. Using UV-visible spectroscopy to follow the intense π-π* transitions of PDAM as a function of metal ion concentration, log K(1) values in 0.1 M NaClO(4) and at 25 °C are, for Cu(II), 3.56(5); Ni(II), 3.06(5); Zn(II), 3.77(5); Co(II), 3.8(1); Mg(II), 0.1(1); Ca(II), 1.94(4); and Ba(II), 0.7(1). For more strongly bound metal ions, competition reactions between PDAM and EDTA (ethylenedinitrilo-tetraacetic acid) or tetren (1,4,7,10,13-pentaazatridecane), monitored following the UV spectrum of PDAM, gave the following log K(1) values in 0.1 M NaClO(4) and at 25 °C: Cd(II), 7.1(1); Pb(II), 5.82(5); In(III), 9.4(1); and Bi(III), 9.4(1). The very low log K(1)(PDAM) values for small metal ions such as Cu(II) or Zn(II) are unprecedented for a phen-based ligand (phen = 1,10-phenanthroline), which is rationalized in terms of the low basicity of the N donors of the ligand (pK(a) = 0.6) and the fact that PDAM has a best-fit size corresponding to large metal ions of ionic radius ~1.0 ?. Large metal ions with ionic radius ≥1.0 ? show large increases in log K(1) relative to their phen complexes, which in turn produces unparalleled selectivities, such as a 3.5 log units greater log K(1)(PDAM) for Cd(II) than for Cu(II). PDAM shows strong fluorescence in aqueous solution, suggesting that its carboxamide groups do not produce a fluorescence-quenching photon-induced electron transfer (PET) effect. Only Ca(II) produces a weak CHEF (chelation enhanced fluorescence) effect with PDAM, while all other metal ions tested produce a decrease in fluorescence, a CHEQ (chelation enhanced quenching effect). The production of the CHEQ effect is rationalized in terms of the idea that coordination of metal ions to PDAM stabilizes a canonical form of the carboxamide groups that promotes a PET effect.  相似文献   
917.
Fluorescent silicon quantum dots (SiQDs) are facilely prepared via one-pot microwave-assisted synthesis. The as-prepared SiQDs feature excellent aqueous dispersibility, robust photo- and pH-stability, strong fluorescence, and favorable biocompatibility. Experiments show the SiQDs are superbly suitable for long-term immunofluorescent cellular imaging. Our results provide a new and invaluable methodology for large-scale synthesis of high-quality SiQDs, which are promising for various optoelectronic and biological applications.  相似文献   
918.
There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces.  相似文献   
919.
New thieno[3,4-b]thiophene derivatives were prepared via a short and versatile synthetic route. Electrochemical studies of 2-heptenylthieno[3,4-b]thiophene, 2-styrylthieno[3,4-b]thiophene, and 2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile and the corresponding polymers revealed that raising the HOMO and lowering the LUMO can be attained by functionalizing thieno[3,4-b]thiophene with aromatic resonance-enhancing and electron-withdrawing groups. The bandgap of resulting polymers varied from 0.78 to 1.0 eV, indicating that poly(2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile) is one of the lowest bandgap polymers ever reported.  相似文献   
920.
A new nanomaterial was prepared by grafting a layer of sulfonated polyaniline network (SPAN-NW) on to the surface of multi-walled carbon nanotube (MWNT) and effectively utilized for immobilization of an enzyme and for the fabrication of a biosensor. SPAN-NW was formed on the surface of MWNT by polymerizing a mixture of diphenyl amine 4-sulfonic acid (DPASA), 4-vinyl aniline (VA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (APASA) in the presence of amine functionalized MWNT (MWNT-NH2). The MWNT-g-SPAN-NW was immobilized with glucose oxidase (GOx) to fabricate the SPAN-NW/GOx biosensor. MWNT-g-SPAN-NW/GOx electrode showed direct electron transfer (DET) for GOx with a fast heterogeneous electron transfer rate constant (ks) of 4.11 s− 1. The amperometric current response of MWNT-g-SPAN-NW/GOx biosensor shows linearity up to 9 mM of glucose, with a correlation coefficient of 0.99 and a detection limit of 0.11 μM (S/N = 3). At a low applied potential of − 0.1 V, MWNT-g-SPAN-NW/GOx electrode possesses high sensitivity (4.34 μA mM− 1) and reproducibility towards glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号