首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2537篇
  免费   94篇
  国内免费   4篇
化学   1966篇
晶体学   32篇
力学   64篇
数学   68篇
物理学   505篇
  2023年   14篇
  2022年   25篇
  2021年   34篇
  2020年   50篇
  2019年   57篇
  2018年   39篇
  2016年   56篇
  2015年   54篇
  2014年   52篇
  2013年   108篇
  2012年   126篇
  2011年   136篇
  2010年   48篇
  2009年   81篇
  2008年   142篇
  2007年   116篇
  2006年   150篇
  2005年   103篇
  2004年   104篇
  2003年   86篇
  2002年   74篇
  2001年   59篇
  2000年   55篇
  1999年   33篇
  1998年   15篇
  1997年   18篇
  1996年   31篇
  1995年   34篇
  1994年   30篇
  1993年   26篇
  1992年   44篇
  1991年   31篇
  1990年   40篇
  1989年   46篇
  1988年   38篇
  1987年   33篇
  1986年   27篇
  1985年   55篇
  1984年   51篇
  1983年   17篇
  1982年   30篇
  1981年   22篇
  1980年   27篇
  1979年   37篇
  1978年   29篇
  1977年   22篇
  1976年   28篇
  1975年   20篇
  1974年   16篇
  1973年   13篇
排序方式: 共有2635条查询结果,搜索用时 0 毫秒
41.
We have investigated the photoluminescence (PL) properties of trace amounts of Pr and Tb in single-crystal samples of yttria-stabilized zironia (YSZ), and found that Pr of the order of 10−6 mass% and Tb of the order of 10−5 mass% in YSZ can be detected by the PL spectroscopy. The PL spectra of the YSZ samples for the 280 nm excitation were comprised of several peaks and a broad emission. The peaks were attributed to transitions of Pr3+ and Tb3+ in the YSZ samples, whereas the broad emission seemed to be attributed to the yttria-associated oxygen vacancies. The peak intensities corresponded to the amounts of Pr and Tb in the YSZ samples, the amounts of which were analyzed by glow discharge mass spectrometry. In the PL excitation spectra, but not in the photoabsorption spectra, small peaks at 376 and 381 nm were observed, and were attributed to the transitions of Tb3+ in the YSZ samples. The results of the PL excitation spectra corresponding to the Pr3+ line emissions suggest that the charge transfer occurs between the YSZ and Pr ion in it. The trace amounts of these lanthanoids in YSZ would disturb the decay process of the photoinduced electrons to the yttria-associated oxygen vacancies.  相似文献   
42.
In a plasma wake wave generated by a high power laser, modulations of the electron density take the shape of paraboloidal dense shells, moving almost at the speed of light. A counterpropagating laser pulse is partially reflected from the shells, acting as relativistic flying mirrors, producing a time-compressed frequency-multiplied pulse due to the double Doppler effect. The counterpropagating laser pulse reflection from the plasma wake wave accompanied by its frequency multiplication (with a factor from 50 to 114) was detected in our experiment.  相似文献   
43.
The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.  相似文献   
44.
Sato Y  Taira T  Smirnov V  Glebova L  Glebov L 《Optics letters》2011,36(12):2257-2259
Laser action of the photo-thermo-refractive (PTR) glass, which is the photosensitive material for holographic recording of volume Bragg gratings (VBGs), was demonstrated for the first time by introducing Nd3?. Nd:PTR glass has a bandwidth of 27.8 nm and 16.0 nm for luminescence and absorption, respectively. An uncoated 2 mm thick Nd:PTR element generated cw laser output of 124 mW, with a slope efficiency of 25%, by laser diode pumping. This Nd:PTR glass also performed wide bandwidth laser action at 1053.9-1063.3 nm, where the decrease of the pump-absorption efficiency was held off below 30%, even under a 3.5 nm shift of pump wavelength from its absorption center.  相似文献   
45.
Long pulse operation up to 1 msec of a high frequency gyrotron with a pulse magnet has been successfully carried out in a frequency range including 1 THz. In the experiments, the timing of an electron beam pulse injection is adjusted at the top of the magnetic field pulse, where the variation of field intensity is negligible. The operation cavity modes seem to be TE1, 12 and TE4,12 at the second harmonics. The corresponding frequencies are 903 GHz and 1,013 GHz, respectively. Additionally several features of radiation measurement results of the gyrotron are described and brief considerations are presented.  相似文献   
46.
The evolution of an Al preformed plasma produced by a prepulse was observed before and after the arrival of the main pulse by an interferometer using a femtosecond probe pulse. A central density depression due to the ponderomotive force of the main laser pulse in the preformed plasma with a 100 m scale length was clearly visible after the main pulse irradiation at an intensity of 5×1016 W/cm2. The temporal profiles of the prepulse, characterized by a cross-correlation in conjunction with a precise density profile measurement by an interferometer, contribute to the better understanding of femtosecond laser-matter interactions. PACS 52.38.-r; 52.50.Jm; 52.70.-m  相似文献   
47.
Geometric distortion caused by B0 inhomogeneity is one of the most important problems for diffusion-weighted images (DWI) using single-shot, echo planar imaging (SS-EPI). In this study, large-deformation, diffeomorphic metric mapping (LDDMM) algorithm has been tested for the correction of geometric distortion in diffusion tensor images (DTI). Based on data from nine normal subjects, the amount of distortion caused by B0 susceptibility in the 3-T magnet was characterized. The distortion quality was validated by manually placing landmarks in the target and DTI images before and after distortion correction. The distortion was found to be up to 15 mm in the population-averaged map and could be more than 20 mm in individual images. Both qualitative demonstration and quantitative statistical results suggest that the highly elastic geometric distortion caused by spatial inhomogeneity of the B0 field in DTI using SS-EPI can be effectively corrected by LDDMM. This postprocessing method is especially useful for correcting existent DTI data without phase maps.  相似文献   
48.
49.
Clindamycin is used for infections caused by Gram-positive and Gram-negative anaerobic pathogens and Gram-positive aerobes. Propionibacterium acnes is an important opportunistic microorganism of the human skin and is related to prostatitis. An LC–electrospray ionization–quadrupole time-of-flight–MS method was validated for determining clindamycin concentrations in plasma and prostate microdialysate. Clindamycin separation was carried out on a C18 column at 0.5 mL/min. The mobile phase employed gradient elution of formic acid and methanol. A mass spectrometer was operated in positive electrospray ionization mode to monitor ion 425.1784 and 253.1152 for clindamycin and cimetidine (internal standard), respectively. Linearity was obtained at 0.5–10.0 μg/mL (plasma) and 0.05–1.0 μg/mL (microdialysate) with coefficients of determination ≥0.999. The intra- and inter-day precision (coefficient of variation - CV%) values were ≤13.83% and 12.51% for plasma, respectively, and ≤10.90% and 9.35% for microdialysate, respectively. The accuracy was between 90.82% and 108.25% for plasma, and 96.97% and 106.98% for microdialysate. The present method was fully validated and applied to investigate clindamycin concentrations in both plasma and prostate by microdialysis in Wistar rats (80 mg/kg, intravenous). Because the penetration of antibiotics into the prostate may be restricted, this method allows us to investigate the prostate concentrations of clindamycin for the first time.  相似文献   
50.
Journal of Sol-Gel Science and Technology - This study reports the development of a functional adsorbent synthesized by the molecular imprinting method in a sol–gel matrix. The adsorption...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号