首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
化学   72篇
物理学   2篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1996年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
71.
A fast and convenient synthesis of aryl amidines starting from carboxylic acids and cyanamides is reported. The reaction was achieved by palladium(II)‐catalysis in a one‐step microwave protocol using [Pd(O2CCF3)2], 6‐methyl‐2,2′‐bipyridyl and trifluoroacetic acid (TFA) in N‐methylpyrrolidinone (NMP), providing the corresponding aryl amidines in moderate to excellent yields. The protocol is very robust with regards to the cyanamide coupling partner but requires electron‐rich ortho‐substituted aryl carboxylic acids. Mechanistic insight was provided by a DFT investigation and direct ESI‐MS studies of the reaction. The results of the DFT study correlated well with the experimental findings and, together with the ESI‐MS study, support the suggested mechanism. Furthermore, a scale‐out (scale‐up) was performed with a non‐resonant microwave continuous‐flow system, achieving a maximum throughput of 11 mmol h?1 by using a glass reactor with an inner diameter of 3 mm at a flow rate of 1 mL min?1.  相似文献   
72.
Highly stereoselective chelation-controlled Pd(0)-catalyzed beta-arylations and beta-vinylations of a five-membered chiral, pyrrolidine-based vinyl ether were achieved using aryl- and vinyl chlorides as substrates, yielding quaternary 2-aryl/vinyl-2-methyl cyclopentanones in 89-96% ee under neutral reaction conditions.  相似文献   
73.
Herein, an efficient synthetic approach to a furopyrazine scaffold with four points of diversity, starting from 2(1H)-pyrazinones, with dipeptomimetic properties, is presented. R-groups corresponding to amino acid side chains were introduced during the 2(1H)-pyrazinone and subsequent furopyrazine formation. The furopyrazine scaffold was further functionalized with an amino- and a carboxy-terminus resulting in a conformationally restricted dipeptidomimetic scaffold. The carboxy-terminus was introduced via a chemoselective vinylation of the 7-position followed by oxidative cleavage, while the amino-terminus was obtained via Buchwald–Hartwig amidation of the 2-position of the scaffold. The versatility of the synthetic method was demonstrated by the synthesis of a small library of diversely substituted furopyrazines having various amino acid side chains on the four points of diversity. Evaluation with an X-ray structure of the scaffold and computational analysis supports the exploitation of the furopyrazine scaffold as a restricted dipeptide mimic, which can mimic the two central residues of a β-turn.  相似文献   
74.
Reaction conditions have been developed for palladium-catalyzed terminal (beta-) arylation of acyclic vinyl ethers with high regioselectivity using inexpensive aryl chlorides as starting materials and the P(t-Bu)3 releasing preligand [(t-Bu3)PH]BF4 as the key additive. This swift and straightforward protocol exploits non-inert conditions and controlled microwave heating to minimize handling and processing times and uses aqueous DMF or environmentally friendly PEG-200 as the reaction medium. The selectivity for linear beta-product in PEG-200 is slightly higher than in aqueous DMF. DFT calculations support a ligand-driven selectivity rationale, where the electronic and steric influence of bulky P(t-Bu)3 ligand provides improved beta-selectivity in the essential insertion step also with electron-rich aryl chlorides. A tentative computational rationalization of the improved selectivity in non-methylated PEG is discussed. Finally the synthetic methodology was used to provide efficient access to linear p-[2-(cyclopropylmethoxy)ethyl] phenol from p-nitrophenyl chloride, a key intermediate in the synthesis of the beta-adrenergic blocking agent Betaxolol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号