首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   7篇
化学   298篇
晶体学   3篇
力学   6篇
数学   59篇
物理学   154篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   15篇
  2011年   27篇
  2010年   20篇
  2009年   14篇
  2008年   27篇
  2007年   27篇
  2006年   33篇
  2005年   22篇
  2004年   15篇
  2003年   15篇
  2002年   12篇
  2001年   13篇
  2000年   17篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   10篇
  1995年   13篇
  1994年   12篇
  1993年   5篇
  1992年   14篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1979年   5篇
  1976年   5篇
  1975年   5篇
  1974年   11篇
  1973年   9篇
  1971年   4篇
  1913年   2篇
  1862年   2篇
排序方式: 共有520条查询结果,搜索用时 15 毫秒
41.
Standard Reference Material (SRM) 1849 Infant/Adult Nutritional Formula has been issued by the National Institute of Standards and Technology (NIST) as a replacement for SRM 1846 Infant Formula, issued in 1996. Extraction characteristics of SRM 1846 have changed over time, as have NIST's analytical capabilities. While certified mass fraction values were provided for five constituents in SRM 1846 (four vitamins plus iodine), certified mass fraction values for 43 constituents are provided in SRM 1849 (fatty acids, elements, and vitamins) and reference mass fraction values are provided for an additional 43 constituents including amino acids and nucleotides, making it the most extensively characterized food-matrix SRM available from NIST.  相似文献   
42.
43.
44.
Polycaprolactone (PCL) is widely used in biomedical applications as electrospun fibers or porous foams. As PCL is synthetic polymer, many researchers have explored blends of PCL–gelatin to combine mechanical and bioactive properties of individual components. High pressure carbon dioxide (CO2) has been studied to foam and impregnate many biocompatible polymers. In case of PCL–gelatin blends, certain compositions can be swelled reversibly under high pressure CO2 without permanent deformation. This allows successful impregnation of PCL–gelatin blends under CO2. This study summarizes effect of different treatments adopted during impregnation process including high pressure CO2 on several blend compositions of PCL–gelatin blends. Stress relaxation, polymer melting and dissolution were observed during several treatments which affects porosity and scaffold structure significantly. Results summarized in this study will aid in optimum selection of PCL–gelatin blend composition for biomedical applications. Furthermore, CO2 solubility in polymers is restricted due to thermodynamic limitations but can be altered in the presence of a co-solvent to produce better foams. PCL can be foamed using supercritical CO2. However, CO2 foaming of PCL–gelatin blend becomes challenging to simultaneous swelling of PCL and compression of gelatin providing blend structural stability. This study has demonstrated ability of supercritical CO2 to foam PCL–gelatin blends in presence of water to create porous structure. These foams were subjected post-fabrication crosslinking and supercritical CO2 without losing porosity of foams. Thus, creating a strategy to use environmentally benign processes to fabricate, crosslink and impregnate porous scaffolds for biomedical applications.  相似文献   
45.
Micron and submicron platinum electrodes with hydrophobically‐modified shrouds have been prepared. The steady state response to a number of electrochemical species have been evaluated with respect to the shroud coating. For submicron electrodes deviations in response were observed based on the shroud modification. These effects were not observed in larger electrodes, and may be due to the so‐called “edge effect” for small diameter electrodes.  相似文献   
46.
The main water-soluble carbohydrates in temperate forage grasses are polymeric fructans. Fructans consist of fructose chains of various chain lengths attached to sucrose as a core molecule. In grasses, fructans are a complex mixture of a large number of isomeric oligomers with a degree of polymerisation ranging from 3 to >100. Accurate monitoring and unambiguous peak identification requires chromatographic separation coupled to mass spectrometry. The mass range of ion trap mass spectrometers is limited, and we show here how monitoring selected multiply charged ions can be used for the detection and quantification of individual isomers and oligomers of high mass, particularly those of high degree of polymerization (DP > 20) in complex plant extracts. Previously reported methods using linear ion traps with low mass resolution have been shown to be useful for the detection of fructans with a DP up to 49. Here, we report a method using high-resolution mass spectrometry (MS) using an Exactive Orbitrap MS which greatly improves the signal-to-noise ratio and allows the detection of fructans up to DP = 100. High-sugar (HS) Lolium perenne cultivars with high concentrations of these fructans have been shown to be of benefit to the pastoral agricultural industry because they improve rumen nitrogen use efficiency and reduce nitrous oxide emissions from pastures. We demonstrate with our method that these HS grasses not only contain increased amounts of fructans in leaf blades but also accumulate fructans with much higher DP compared to cultivars with normal sugar levels.  相似文献   
47.
To understand the importance of amino acids that comprise the peptide PMI (p53-MDM2/MDMX inhibitor), a p53-mimicking peptide with high affinity for the ubiquitin ligase MDM2, computational alanine scanning has been carried out using various protocols. This approach is very useful for identifying regions of a peptide that can be mutated to yield peptides that bind to their targets with higher affinities. Computational alanine scanning is a very useful technique that involves mutating each amino acid of the peptide in its complex with its target (MDM2 in the current study) to alanine, running short simulations on the mutated complex and computing the difference in interaction energies between the mutant peptides and the target protein (MDM2 in the current study) relative to the interaction energy of the original (wild-type) peptide and the target protein (MDM2 in the current study). We find that running multiple short simulations yield values of computed binding affinities (enthalpies) that are similar to those obtained from a long simulation and are well correlated with the trends in the data available from experiments that used Surface Plasmon Resonance to obtain dissociation constants. The p53-mimicking peptides contain three amino acids (F19, W23 and L26) that are major determinants of the interactions between the peptides and MDM2 and form an essential motif. We find in the current study that the trends amongst the contributions to experimental binding affinities of the hydrophobic residues F19, W23 and L26 are the best reproduced in all the computational protocols examined here. This study suggests that running such short simulations may provide a rapid method to redesign peptides to obtain high-affinity variants against a target protein. We further observe that modelling an extended conformation at the C-terminus of the helical PMI peptides, in accord with the conformation of the p53-peptide complexed to MDM2, reproduces the trends seen amongst the experimental affinities of the peptides that carry the alanine mutations at their C-termini. This suggests that some of the mutant peptides possibly interconvert between helical and extended states and can bind to MDM2 in either conformation. This novel feature, not obvious from the crystallographic data, if factored into modelling protocols, may yield novel high-affinity peptides. Our findings suggest that such protocols may enable rapid investigations of at least certain types of amino acid mutations, notably from large to small amino acids.  相似文献   
48.
Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C(+) ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC](+) and [BeC](+) to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.  相似文献   
49.
Thin films of SnSb2S4 have been prepared on glass substrate by using thermal evaporation techniques. The films were annealed in argon gas at low pressure in sealed glass ampoules at 85 °C, 150 °C, 275 °C and 325 °C. XRD of the films reveal that the low temperature annealed films are poly crystalline while the as deposited films and high annealed films are in amorphous states. There is no adequate variation in the photoconductivity response of the amorphous and crystalline phases. The transmittance of the films is low and having no transmittance below 740 nm. The band gap calculated by ellipsometry technique is in the range of 1.82–3.1 eV. The films have n-type conductivity but the film annealed at 325 °C show p-type conductivity.  相似文献   
50.
Ringrazio il collega dell'Università di Chicago di avermi permesso di pubblicare qui un breve sunto della commemorazione da lui scritta; e sono dolente che lo spazio concessomi non me ne abbia permesso la pubblicazione integrale.Guido Fubini  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号