首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  国内免费   2篇
化学   18篇
力学   3篇
数学   6篇
物理学   16篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.
22.
The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the aromatic compounds benzene and toluene. Parameters were optimized for benzene and then transferred directly to toluene, with parameters for the methyl moiety of toluene taken from the previously published work on the alkanes. Optimization of all parameters was performed against an extensive set of quantum mechanical and experimental data. Ab initio data was used for determination of the electrostatic parameters, for the vibrational analysis, and in the optimization of the relative magnitudes of the Lennard-Jones parameters. The absolute values of the Lennard-Jones parameters were determined by comparing computed and experimental heats of vaporization, molecular volumes, free energies of hydration, and dielectric constants. The newly developed parameter set was extensively tested against additional experimental data such as diffusion constants, heat capacities at constant pressure, and isothermal compressibilities including data as a function of temperature. Moreover, the structures of liquid benzene, liquid toluene, and solutions of each in water were studied. In the case of benzene, the computed and experimental total distribution function were compared, with the developed model shown to be in excellent agreement with experiment.  相似文献   
23.
Lignocellulosic tetrahydrofuranic (THF) biofuels have been identified as promising fuel candidates for spark-ignition (SI) engines. To support the potential use as transportation biofuels, fundamental studies of their combustion and emission behavior are highly important. In the present study, the high-temperature (HT) combustion chemistry of tetrahydrofurfuryl alcohol (THFA), a THF based biofuel, was investigated using a comprehensive experimental and numerical approach.Representative chemical species profiles in a stoichiometric premixed methane flame doped with ~20% (molar) THFA at 5.3 kPa were measured using online gas chromatography. The flame temperature was obtained by NO laser-induced fluorescence (LIF) thermometry. More than 40 chemical products were identified and quantified. Many of them such as ethylene, formaldehyde, acrolein, allyl alcohol, 2,3-dihydrofuran, 3,4-dihydropyran, 4-pentenal, and tetrahydrofuran-2-carbaldehyde are fuel-specific decomposition products formed in rather high concentrations. In the numerical part, as a complement to kinetic modeling, high-level theoretical calculations were performed to identify plausible reaction pathways that lead to the observed products. Furthermore, the rate coefficients of important reactions and the thermochemical properties of the related species were calculated. A detailed kinetic model for high-temperature combustion of THFA was developed, which reasonably predicts the experimental data. Subsequent rate analysis showed that THFA is mainly consumed by H-abstraction reactions yielding several fuel radicals that in turn undergo either β-scission reactions or intramolecular radical addition that effectively leads to ring enlargement. The importance of specific reaction channels generally correlates with bond dissociation energies. Along THFA reaction routes, the derived species with cis configuration were found to be thermodynamically more stable than their corresponding trans configuration, which differs from usual observations for hydrocarbons.  相似文献   
24.
NH is a key short-lived radical involved in the prompt-NO formation. Quantification of NH is thus particularly important for testing the NO kinetic mechanisms. However, quantitative measurements of native NH in hydrocarbon/oxygen/nitrogen flames remain very scarce. Therefore, in this work, the mole fractions of native NH were obtained using a combination of laser-based diagnostics; Laser Induced Fluorescence (LIF) and Cavity Ring-Down Spectroscopy (CRDS). The NH species was probed after exciting the transition R1(6) in the A3Π-X3Σ? (0-0) system at 333.9?nm. The mole fraction profiles of NH were successfully obtained in premixed low-pressure flames of CH4/O2/N2 and C2H2/O2/N2 at two equivalence ratios of 1.00 and 1.25. The estimated detection limit for the NH radical was around 4.5?×?108 molecule cm?3 (i.e. 2 ppb in mole fraction at 1600?K), which is nearly 2 orders of magnitude lower than previous values reported in the literature. These new experimental results were compared with predictions by a recently developed NO model (namely NOMecha2.0). In the case of the CH4 flames, a satisfying agreement between the experiment and model was observed. However, in the case of the C2H2 flames, some discrepancies were observed. Model analysis has highlighted the importance of the HCCO radicals in the NH formation through the HCNO→HNCO→NH2 reactions pathway. Modification of the rate constant values of the reactions C2H2+?O and HCCO?+?O2, which are key reactions for both the acetylene laminar flame speed and the HCCO predictions, has enabled the model to satisfactorily predict the experimental NH and NO profiles also in the C2H2 flames.  相似文献   
25.
A compact X-ray source (1 dm3) has been built, the basis of X-ray production being that of bremsstrahlung (Br) of the hot electrons generated in situ in the core of a hot magnetized plasma. Among the advantages of this device are that it can be pulsed or operated in a stable continuous mode and that there is no requirement for any filament nor high-voltage power supply. Thick-target Br (from a solid material) is involved, first in view of investigating runaway electrons leaking to the lateral walls. Second and more importantly, the features of thick-target Br are exploited in order to make the X-ray source point-like and more intense, a small target being inserted in the way of the hot electrons. The brightness obtained at 20 keV is 3.5×1011 photons s−1 mm−2 sr−1 keV−1, which for example allows the obtaining of mammographic images in exposure times of a few seconds.  相似文献   
26.
Temperature measurements have been performed in a low-pressure flame by the technique of diode laser induced atomic fluorescence. The experiments were done in a near-stoichiometric flat-flame of premixed methane, oxygen and nitrogen, at a pressure of 5.3 kPa. Indium atoms were seeded to the flame and probed using blue diode lasers; the lineshapes of the resulting fluorescence spectra were used to determine the flame temperature at a range of heights above the burner plate. The particular issues associated with the implementation of this measurement approach at low pressure are discussed, and it is shown to work especially well under these conditions. The atomic fluorescence lineshape thermometry technique is quicker to perform and requires less elaborate equipment than other methods that have previously been implemented in low-pressure flames, including OH-LIF and NO-LIF. There was sufficient indium present to perform measurements at all locations in the flame, including in the pre-heat zone close to the burner plate. Two sets of temperature measurements have been independently performed by using two different diode lasers to probe two separate transitions in atomic indium. The good agreement between the two sets of data provides a validation of the technique. By comparing thermocouple profiles recorded with and without seeding of the flame, we demonstrate that any influence of seeding on the flame temperature is negligible. The overall uncertainty of the measurements reported here is estimated to be ±2.5% in the burnt gas region.  相似文献   
27.
We compare numerical results for free-free Gaunt factors in a hot dense cesium plasma, obtained in the average atom approximation either with a simple approximate analytic potential or with the finite temperature Thomas-Fermi model. We obtain results (for the spectrum of radiation from a 1 keV electron incident on a cesium ion in a 1 keV plasma) from an exact numerical calculation in partial waves of the relativistic electron Bremsstrahlung cross section treated as a single electron transition within these potentials. Comparison shows that Born approximation results in the same potentials fail by large factors, especially at the soft photon end of the spectrum.  相似文献   
28.

Background  

As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood.  相似文献   
29.
Temperature and mole fraction profiles have been measured in laminar stoichiometric premixed CH4/O2/N2 and CH4/1.5%C6H5CH3/O2/N2 flames at low pressure (0.0519 bar) by using thermocouple, molecular beam/mass spectrometry (MB/MS), and gas chromatography/mass spectrometry (GC/MS) techniques. The present study completes our previous work performed on the thermal degradation of benzene in CH4/O2/N2 operating at similar conditions. Mole fraction profiles of reactants, final products, and reactive and stable intermediate species have been analyzed. The main intermediate aromatic species analyzed in the methane-toluene flame were benzene, phenol, ethylbenzene, benzylalcohol, styrene, and benzaldehyde. These new experimental results have been modeled with our previous model including submechanisms for aromatics (benzene up to p-xylene) and aliphatic (C1 up to C7) oxidation. Good agreement has been observed for the main species analyzed. The main reaction paths governing the degradation of toluene in the methane flame were identified, and it occurs mainly via the formation of benzene (C6H5CH3 + H = C6H6 + CH3) and benzyl radical (C6H5CH3 + H = C6H5CH2 + H2). Due to the abundance of methyl radicals, it was observed that recombination of benzyl and methyl is responsible for main monosubstitute aromatic species analyzed in the methane-toluene flame. The oxidation of these substitute species led to cyclopentadienyl radical as observed in a methane-benzene flame.  相似文献   
30.
A method is proposed to improve the numerical dispersion characteristics for simulations of the scalar wave equation in 3D using the FDTD method. The improvements are realized by choosing a face-centered-cubic (FCC) grid instead of the typical Cartesian (Yee) grid, which exhibits non-physical distortions of the wavefront due to the FD stencil. FCC grids are the logical extension of hexagonal grids in 2D, and have been shown previously to provide optimal sampling of space based on close packing of spheres (highest density). The difference equations are developed for the wave equation on this alternative grid, and the dispersion relationship and stability for grids of equal and non-equal aspect ratios are derived. A comparison is made between FCC and Cartesian formulations, based upon having an equal volume density of gridpoints in each method (i.e. the computational storage requirements of each method would be the same for the same simulated space). The comparison shows that the FCC grid exhibits a much more isotropic dispersion relation than the Cartesian grid of equivalent density. Furthermore, for an equivalent density, the FCC method has a more relaxed stability criterion by a factor of approximately 1.35, resulting in a further reduction in computational resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号