首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6128篇
  免费   298篇
  国内免费   52篇
化学   4596篇
晶体学   44篇
力学   111篇
数学   626篇
物理学   1101篇
  2023年   27篇
  2022年   85篇
  2021年   119篇
  2020年   94篇
  2019年   110篇
  2018年   96篇
  2017年   90篇
  2016年   199篇
  2015年   185篇
  2014年   218篇
  2013年   373篇
  2012年   429篇
  2011年   502篇
  2010年   306篇
  2009年   238篇
  2008年   402篇
  2007年   351篇
  2006年   359篇
  2005年   304篇
  2004年   284篇
  2003年   241篇
  2002年   213篇
  2001年   108篇
  2000年   101篇
  1999年   73篇
  1998年   53篇
  1997年   51篇
  1996年   61篇
  1995年   52篇
  1994年   49篇
  1993年   32篇
  1992年   32篇
  1991年   26篇
  1990年   38篇
  1989年   36篇
  1988年   29篇
  1987年   23篇
  1986年   19篇
  1985年   42篇
  1984年   29篇
  1983年   22篇
  1982年   26篇
  1981年   26篇
  1980年   20篇
  1979年   30篇
  1978年   18篇
  1977年   24篇
  1976年   22篇
  1975年   18篇
  1973年   27篇
排序方式: 共有6478条查询结果,搜索用时 15 毫秒
141.
This paper describes a calorimetric study of the association of a series of seven fluorinated benzenesulfonamide ligands (C6HnF5?nSO2NH2) with bovine carbonic anhydrase II (BCA). Quantitative structure–activity relationships between the free energy, enthalpy, and entropy of binding and pKa and log P of the ligands allowed the evaluation of the thermodynamic parameters in terms of the two independent effects of fluorination on the ligand: its electrostatic potential and its hydrophobicity. The parameters were partitioned to the three different structural interactions between the ligand and BCA: the ZnII cofactor–sulfonamide bond (≈65 % of the free energy of binding), the hydrogen bonds between the ligand and BCA (≈10 %), and the contacts between the phenyl ring of the ligand and BCA (≈25 %). Calorimetry revealed that all of the ligands studied bind in a 1:1 stoichiometry with BCA; this result was confirmed by 19F NMR spectroscopy and X‐ray crystallography (for complexes with human carbonic anhydrase II).  相似文献   
142.
Poly(arylene ether sulfone) (PSF), showing good thermal stability and excellent mechanical properties, was synthesized as an anion‐exchange matrix. It was synthesized by the condensation polymerization between bisphenol A and 4,4′‐dichlorodiphenylsulfone. 1°‐Amine‐containing poly(arylene ether sulfone) (1°‐APSF) was synthesized by the reduction reaction of a nitrated PSF. Then, it was transferred to 3°‐amine‐containing poly(arylene ether sulfone) (3°‐APSF) by the alkylation of the amine of 1°‐APSF. The properties of PSF, 1°‐APSF, and 3°‐APSF were investigated by Fourier transform infrared, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The introduction of the 3°‐amine group into PSF increased the glass‐transition temperature but decreased thermooxidative stability. The ion‐exchange capacities of 1°‐APSF and 3°‐APSF were shown to be 2.24 and 2.86 mequiv/g, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4281–4287, 2002  相似文献   
143.
We have investigated atomic and electronic structures of hydrogen-chemisorbed single-walled carbon nanotubes (SWCNTs) by density functional calculations. We have searched for relative stability of various hydrogen adsorption geometries with coverage. The hydrogenated SWCNTs are stable with coverage of H/C, theta >/= 0.3. The circular cross sections of nanotubes are transformed to polygonal shapes with different symmetries upon hydrogen adsorption. We find that the band gap in carbon nanotubes can be engineered by varying hydrogen coverage, independent of the metallicity of carbon nanotubes. This is explained by the degree of sp(3) hybridization.  相似文献   
144.
The species FeRu3(CO)13(μ-PPH2)2, synthesized from Ru3(CO)12 and Fe(CO)4(Ph2PPPh2),has been characterized both spectroscopically and via a single-crystal X-ray structural analysis. This complex crystallizes in the centrosymmetric triclinic space group P1 [No. 2, Ci1] with a  10.066(3), b  12.899(3), c  17.003(4) Å, α  111.89(2), β  91.02(2), γ  102.00(2)°, V  1992.7(9) Å3, Z  2, ?(obsd)  1.79(2) g cm-3 and ?(calcd)  1.82 cm-3. Diffraction data were collected with a Syntex P21 automated four-circle diffractometer and the structure was refined to RF  6.0% and RWF  3.6% for all 5213 reflections (RF  3.8%, RWF  3.6% for those 4140 reflections with |Fo|> 3σ(|Fo|).The metal atoms define a planar triangulated rhombus, with atoms Ru(1) and Ru(2) at the bridgehead, and Fe(1) and Ru(3) at the acute apices. Fe(1) is linked to four terminal carbonyl ligands and is associated with the heteronuclear bonds Fe(1)Ru(1)  2.861(1) Å and Fe(1)Ru(2)  2.868(1) Å. The ruthenium atoms are each bonded to three terminal carbonyl groups. The retheniumruthenium distances are Ru(1)Ru(2)  3.098(1), Ru(1)Ru(3)  3.147(1), and Ru(2)Ru(3)  3.171(1) Å. The structure is completed by Ph2P bridges across the Ru(1)Ru(3) and Ru(2)(ru(3) vectors (<Ru(1)P(1)Ru(3)  84.89(5)° and <Ru(2)P(2)Ru(3)  85.56(6)°).  相似文献   
145.
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.  相似文献   
146.
In this study, kartogenin was incorporated into an electrospun blend of polycaprolactone and poly(lactic-co-glycolic acid) (1:1) to determine the feasibility of this system for sustained drug delivery. Kartogenin is a small-molecule drug that could enhance the outcome of microfracture, a cartilage restoration procedure, by selectively stimulating chondrogenic differentiation of endogenous bone marrow mesenchymal stem cells. Experimental results showed that kartogenin did not affect the electrospinnability of the polymer blend, and it had negligible effects on fiber morphology and scaffold mechanical properties. The loading efficiency of kartogenin into electrospun membranes was nearly 100%, and no evidence of chemical reaction between kartogenin and the polymers was detected by Fourier transform infrared spectroscopy. Analysis of the released drug using high-performance liquid chromatography–photodiode array detection indicated an abundance of kartogenin and only a small amount of its major hydrolysis product. Kartogenin displayed a typical biphasic release profile, with approximately 30% being released within 24 h followed by a much slower, constant rate of release up to 28 days. Although additional development is needed to tune the release kinetics and address issues common to electrospun scaffolds (e.g., high fiber density), the results of this study demonstrated that a scaffold electrospun from biodegradable synthetic polymers is a suitable kartogenin delivery vehicle.  相似文献   
147.
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice’s performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1–42 (Aβ1–42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.  相似文献   
148.
We report the crystal structure of a new polymorph of l-tyrosine (denoted the β polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm. Structure refinement was carried out both from powder XRD data, using the Rietveld profile refinement technique, and from 3D-ED data. The final refined structure was validated both by periodic DFT-D calculations, which confirm that the structure corresponds to an energy minimum on the energy landscape, and by the fact that the values of isotropic 13C NMR chemical shifts calculated for the crystal structure using DFT-D methodology are in good agreement with the experimental high-resolution solid-state 13C NMR spectrum. Based on DFT-D calculations using the PBE0-MBD method, the β polymorph is meta-stable with respect to the previously reported crystal structure of l-tyrosine (now denoted the α polymorph). Crystal structure prediction calculations using the AIRSS approach suggest that there are three other plausible crystalline polymorphs of l-tyrosine, with higher energy than the α and β polymorphs.

A new polymorph of l-tyrosine is reported, with the crystal structure determined by combined analysis of 3D-ED data and powder XRD data, augmented by information from periodic DFT-D calculations and solid-state 13C NMR data.  相似文献   
149.
The photoelectric work function of nearly stoichiometric (111) and (100) hydrothermally grown UO2 was measured to be 6.28 ± 0.36 eV and 5.80 ± 0.36 eV, respectively. Candidate metals for electrical contacts are identified for both rectifying and non‐rectifying contacts based on work function, lattice compatibility, and electrical conductivity.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号