首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5077篇
  免费   246篇
  国内免费   28篇
化学   3903篇
晶体学   46篇
力学   71篇
数学   400篇
物理学   931篇
  2023年   32篇
  2022年   54篇
  2021年   109篇
  2020年   88篇
  2019年   95篇
  2018年   74篇
  2017年   71篇
  2016年   177篇
  2015年   143篇
  2014年   178篇
  2013年   314篇
  2012年   362篇
  2011年   441篇
  2010年   255篇
  2009年   249篇
  2008年   354篇
  2007年   289篇
  2006年   293篇
  2005年   227篇
  2004年   205篇
  2003年   178篇
  2002年   212篇
  2001年   102篇
  2000年   106篇
  1999年   61篇
  1998年   39篇
  1997年   51篇
  1996年   46篇
  1995年   35篇
  1994年   27篇
  1993年   32篇
  1992年   39篇
  1991年   23篇
  1990年   31篇
  1989年   31篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   27篇
  1984年   23篇
  1983年   16篇
  1982年   18篇
  1981年   11篇
  1980年   13篇
  1979年   10篇
  1978年   15篇
  1977年   19篇
  1976年   12篇
  1975年   11篇
  1970年   17篇
排序方式: 共有5351条查询结果,搜索用时 15 毫秒
151.
Current solution NMR experiments for characterizing conformational exchange processes in large proteins are limited to exchange rates ca. 500-3000 s-1. A TROSY-based constant relaxation time (R1rho - R1) experiment is designed to extend this capability to measure motion with rates up to 105 s-1 in large macromolecules. The experiment combines off-resonance spin-lock rf fields, which provide access to the faster time-scale dynamics, with TROSY coherence selection, which extends the molecular-weight range available for study. When implemented on the 53-kDa dimeric enzyme triosephosphate isomerase, the experiment yielded substantial gains in signal-to-noise (up to 60%) over current experiments at modest static magnetic fields (14.1 T). The TROSY (R1rho - R1) experiment should therefore be of general utility for investigation of fast conformational exchange events in large proteins.  相似文献   
152.
Abstract— The action spectrum for the generation of singlet oxygen (1O2) from mitochondrial membranes under aerobic conditions was measured at wavelengths between 360 and 600 nm, using sub-mitochondrial particles (SMP) prepared from soybean hypocotyls. The spectrum, showing a peak at about 420 nm, remarkably resembles the absorption spectra of the Fe-S centers of nonheme iron proteins. Disruption of the Fe-S centers by treating SMP with mersalyl acid resulted in a substantial decrease in the efficiency of 1O2 generation, leaving an action spectrum whose pattern is significantly similar to the absorption spectrum of flavins, at least in the region of near UV and blue light wavelengths. Estimating the contribution of the Fe-S centers to the generation of 1O2 from SMP, we suggest that the Fe-S centers act as very important endogenous photosensitizers in plant cells, in so far as the type II mechanism is concerned. Possible involvement of mitochondrial flavoproteins in the generation of 1O2 is also discussed.  相似文献   
153.
Herpes virus entry mediator (HVEM) is a newly discovered member of the tumor necrosis factor receptor (TNFR) superfamily that has a role in herpes simplex virus entry, in T cell activation and in tumor immunity. We generated mAb against HVEM and detected soluble HVEM (SHVEM) in the sera of patients with various autoimmune diseases. HVEM was constitutively expressed on CD4(+) and CD8(+) T cells, CD19(+) B cells, CD14(+) monocytes, neutrophils and dendritic cells. In three-way MLR, mAb 122 and 139 were agonists and mAb 108 had blocking activity. An ELISA was developed to detect sHVEM in patient sera. sHVEM levels were elevated in sera of patients with allergic asthma, atopic dermatitis and rheumatoid arthritis. The mAbs discussed here may be useful for studies of the role of HVEM in immune responses. Detection of soluble HVEM might have diagnostic and prognostic value in certain immunological disorders.  相似文献   
154.
155.
156.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   
157.
Catalysis is central to contemporary synthetic chemistry. There has been a recent recognition that the rates of photochemical reactions can be profoundly impacted by the use of Lewis acid catalysts and co-catalysts. Herein, we show that Brønsted acids can also modulate the reactivity of excited-state organic reactions. Brønsted acids dramatically increase the rate of Ru(bpy)32+-sensitized [2 + 2] photocycloadditions between C-cinnamoyl imidazoles and a range of electron-rich alkene reaction partners. A combination of experimental and computational studies supports a mechanism in which the Brønsted acid co-catalyst accelerates triplet energy transfer from the excited-state [Ru*(bpy)3]2+ chromophore to the Brønsted acid activated C-cinnamoyl imidazole. Computational evidence further suggests the importance of driving force as well as geometrical reorganization, in which the protonation of the imidazole decreases the reorganization penalty during the energy transfer event.

Brønsted acids can catalyze triplet energy transfer reactions, and DFT computations suggest the unexpected importance of reorganization energy for catalysis.  相似文献   
158.
Tumor target-derived soluble secretary factor has been known to influence macrophage activation to induce nitric oxide (NO) production. Since heme oxygenase-1 (HO-1) is induced by a variety of conditions associated with oxidative stress, we questioned whether soluble factor from tumor cells induces HO-1 through NO-dependent mechanism in macrophages. We designated this factor as a tumor-derived macrophage-activating factor (TMAF), because of its ability to activate macrophages to induce iNOS. Although TMAF alone showed modest activity, TMAF in combination with IFN-gamma significantly induced iNOS expression and NO synthesis. Simultaneously, TMAF induced HO-1 and this induction was slightly augmented by IFN-gamma. Surprisingly, however, induction of HO-1 by TMAF was not inhibited by the treatment with the highly selective iNOS inhibitor, 1400 W, indicating that TMAF induces the HO-1 enzyme by a NO-independent mechanism. While rIFN-gamma alone induced iNOS, it had no effect on HO-1 induction by itself. Collectively, the current study reveals that soluble factor from tumor target cells induces HO-1 enzyme in macrophages. However, overall biological significance of this phenomenon remains to be determined.  相似文献   
159.
A series of glucopyranosylamide lipids, N-(X-octadecenoyl)-beta-D-glucopyranosylamine [X = 13-cis (1), 11-cis (2), 9-cis (3), 6-cis (4), and 9-cis,12-cis (5)] and their saturated homologue N-octadecanoyl-beta-d-glucopyranosylamine (6), which differ in the position of a cis double bond in the C18 hydrocarbon chains, have been synthesized. The effect of the cis double bond position on the chiral self-assembly of each glycolipid has been examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV, and circular dichroism (CD). The 11-cis derivative 2 was observed to self-assemble in water to form a uniform hollow cylinder structure with about 200-nm outer diameters in >98% yields. The obtained nanotubes from 2 showed the narrowest distribution of outer diameters and also gave a negative CD band around 234-236 nm, showing the largest CD intensity among the glycolipids investigated. Thus, we found that the position of a cis double bond significantly influences the homogeneity of the outer diameters as well as growth behavior of the self-assembled nanotube structures. Chiral molecular packing driven by a possible bending structure of the unsaturated glycolipids is playing a critical role in determining tubular morphology through molecular self-assembly.  相似文献   
160.
Earlier report showed that expression of a splice variant of CD99 transmembrane protein increases invasive ability of human breast cancer cells. Cell motility was also significantly enhanced by the CD99 splice variant expression. In an effort to identify the cellular components that mediate a signal transduction pathway triggered by the CD99 splice variant, known signal path inhibitors were examined for their effects on the motility of the CD99 splice variant-transfected MDA-MB-231 breast cancer cells. Phenylarsine oxide, an inhibitor of phosphatase specific for focal adhesion kinase, and PP1, an inhibitor of src kinase family, significantly suppressed motility of the cells. Among different types of src transfectant clones generated, kinase-negative mutant src transfectant cells were 80% less motile than the mock cells transfected with an empty-vector, while v-src and c-src transfectants exhibited cell motility levels at or slightly above the mock transfectant. These results suggest that src and focal adhesion kinase mediate the intracellular signaling pathway of a CD99 splice variant for the induction of motility of human breast cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号