首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1197篇
  免费   30篇
  国内免费   9篇
化学   825篇
晶体学   7篇
力学   58篇
数学   99篇
物理学   247篇
  2022年   9篇
  2021年   4篇
  2020年   16篇
  2019年   22篇
  2018年   21篇
  2017年   12篇
  2016年   25篇
  2015年   21篇
  2014年   31篇
  2013年   58篇
  2012年   83篇
  2011年   67篇
  2010年   36篇
  2009年   28篇
  2008年   60篇
  2007年   69篇
  2006年   40篇
  2005年   60篇
  2004年   41篇
  2003年   50篇
  2002年   41篇
  2001年   29篇
  2000年   33篇
  1999年   18篇
  1998年   14篇
  1997年   14篇
  1996年   22篇
  1995年   10篇
  1994年   17篇
  1993年   15篇
  1992年   23篇
  1991年   12篇
  1990年   8篇
  1989年   8篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   21篇
  1983年   9篇
  1982年   17篇
  1981年   12篇
  1980年   10篇
  1979年   11篇
  1978年   14篇
  1977年   13篇
  1976年   15篇
  1974年   7篇
  1973年   17篇
  1970年   4篇
排序方式: 共有1236条查询结果,搜索用时 31 毫秒
951.
952.
953.
The cross section for straight phi meson photoproduction on the proton has been measured for the first time up to a four-momentum transfer -t = 4 GeV2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV2, the data support a model where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark in the proton and in the straight phi.  相似文献   
954.
955.
This work probes the slurry architecture of a high silicon content electrode slurry with and without low molecular weight polymeric dispersants as a function of shear rate to mimic electrode casting conditions for poly(acrylic acid) (PAA) and lithium neutralized poly(acrylic acid) (LiPAA) based electrodes. Rheology coupled ultra-small angle neutron scattering (rheo-USANS) was used to examine the aggregation and agglomeration behavior of each slurry as well as the overall shape of the aggregates. The addition of dispersant has opposing effects on slurries made with PAA or LiPAA binder. With a dispersant, there are fewer aggregates and agglomerates in the PAA based silicon slurries, while LiPAA based silicon slurries become orders of magnitude more aggregated and agglomerated at all shear rates. The reorganization of the PAA and LiPAA binder in the presence of dispersant leads to a more homogeneous slurry and a more heterogeneous slurry, respectively. This reorganization ripples through to the cast electrode architecture and is reflected in the electrochemical cycling of these electrodes.  相似文献   
956.
The low temperature (approximately 5 K) X-band ESR spectra are reported of the cyanide-bridged mixed-valence complexes [(OC)5Cr(mu-CN)M(NH3)5]X2 (M = Ru, Os; X = PF6(-)) in frozen matrices formed from nitromethane, acetonitrile and dimethylformamide with toluene. The anisotropy (g paralell-g perpendicular) is greater for the ruthenium than for the osmium complex. It is positive in all cases and is strongly dependent on the hydrogen-bonding interaction between the solvent matrix and the metal-ammine fragment, decreasing in the order nitromethane > acetonitrile > dimethylformamide. The axial ligand field parameter, Delta, is quite insensitive to the ammine metal (M) and is mainly determined by the solvent matrix. Density functional calculations, together with a simplified MO model, show that: (a) The value of Delta is dominated by the interaction between the filled cyanide pi-orbitals and the ammine-metal d(xz,yz) orbitals, (b) Delta decreases with increasing solvent donicity because the resulting positive shift of the d-orbital energies reduces this interaction, (c) the insensitivity of Delta to the ammine-metal arises because an increase in the energy mismatch between the cyanide pi-orbitals and the d-orbitals in osmium compound is offset by an increase in the 5d resonance integrals relative to those in the 4d shell. Semi-quantitative values are obtained for the pi and pi* resonance integrals. We point out that g paralell determines that portion of the ammine-metal spin population that interacts with the cyanide bridge, and should therefore be correlated with the degree of metal-metal charge transfer in low-spin d6-d5 intervalence compounds. X-band ESR spectra of the polycrystalline powders (M = Ru, Os; X = CF3SO3(-)) are rhombic with similar axial and rhombic ligand field parameters. The rhombicity is interpreted as resulting from asymmetric cation-anion hydrogen-bonding that is apparent in the crystal structures of these isomorphous compounds.  相似文献   
957.
Cyclobutane pyrimidine dimer (CPD) photolyases are structure specific DNA-repair enzymes that specialize in the repair of CPDs, the major photoproducts that are formed upon irradiation of DNA with ultraviolet light. The purified enzyme binds a flavin adenine dinucleotide (FAD), which is in the neutral radical semiquinone (FADH(*)) form. The CPDs are repaired by a light-driven, electron transfer from the anionic hydroquinone (FADH(-)) singlet excited state to the CPD, which is followed by reductive cleavage of the cyclobutane ring and subsequent monomerization of the pyrimidine bases. CPDs formed between two adjacent thymidine bases (T< >T) are repaired with greater efficiency than those formed between two adjacent cytidine bases (C< >C). In this paper, we investigate the changes in Escherichia coli photolyase that are induced upon binding to DNA containing C< >C lesions using resonance Raman, UV-vis absorption, and transient absorption spectroscopies, spectroelectrochemistry, and computational chemistry. The binding of photolyase to a C< >C lesion modifies the energy levels of FADH(*), the rate of charge recombination between FADH(-) and Trp(306)(*), and protein-FADH(*) interactions differently than binding to a T< >T lesion. However, the reduction potential of the FADH(-)/FADH(*) couple is modified in the same way with both substrates. Our calculations show that the permanent electric dipole moment of C< >C is stronger (12.1 D) and oriented differently than that of T< >T (8.7 D). The possible role of the electric dipole moment of the CPD in modifying the physicochemical properties of photolyase as well as in affecting CPD repair will be discussed.  相似文献   
958.
As part of a collaboration with the National Institutes of Health’s Office of Dietary Supplements and the Food and Drug Administration’s Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of β-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, β-carotene, and γ-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, β-carotene isomers, and δ-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements. Contribution of the US Government; not subject to copyright  相似文献   
959.
Chemical sensing and imaging with metallic nanorods   总被引:3,自引:0,他引:3  
In this Feature Article, we examine recent advances in chemical analyte detection and optical imaging applications using gold and silver nanoparticles, with a primary focus on our own work. Noble metal nanoparticles have exciting physical and chemical properties that are entirely different from the bulk. For chemical sensing and imaging, the optical properties of metallic nanoparticles provide a wide range of opportunities, all of which ultimately arise from the collective oscillations of conduction band electrons ("plasmons") in response to external electromagnetic radiation. Nanorods have multiple plasmon bands compared to nanospheres. We identify four optical sensing and imaging modalities for metallic nanoparticles: (1) aggregation-dependent shifts in plasmon frequency; (2) local refractive index-dependent shifts in plasmon frequency; (3) inelastic (surface-enhanced Raman) light scattering; and (4) elastic (Rayleigh) light scattering. The surface chemistry of the nanoparticles must be tunable to create chemical specificity, and is a key requirement for successful sensing and imaging platforms.  相似文献   
960.
The ability of DNA strands to influence cellular gene expression directly and to bind with high affinity and specificity to other biological molecules (e.g., proteins and target DNA strands) makes them a potentially attractive component of cell culture substrates. On the basis of the potential importance of immobilized DNA in cell culture and the well-defined characteristics of alkanethiol self-assembled monolayers (SAMs), the current study was designed to create multifunctional SAMs upon which cell adhesion and DNA immobilization can be independently modulated. The approach immobilizes the fibronectin-derived cell adhesion ligand Arg-Gly-Asp-Ser-Pro (RGDSP) using carbodiimide activation chemistry and immobilizes DNA strands on the same surface via cDNA-DNA interactions. The surface density of hexanethiol-terminated DNA strands on alkanethiol monolayers (30.2-69.2 pmol/cm2) was controlled using a backfill method, and specific target DNA binding on cDNA-containing SAMs was regulated by varying the soluble target DNA concentration and buffer characteristics. The fibronectin-derived cell adhesion ligand GGRGDSP was covalently linked to carboxylate groups on DNA-containing SAM substrates, and peptide density was proportional to the amount of carboxylate present during SAM preparation. C166-GFP endothelial cells attached and spread on mixed SAM substrates and cell adhesion and spreading were specifically mediated by the immobilized GGRGDSP peptide. The ability to control the characteristics of noncovalent DNA immobilization and cell adhesion on a cell culture substrate suggests that these mixed SAMs could be a useful platform for studying the interaction between cells and DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号