首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1477篇
  免费   91篇
  国内免费   12篇
化学   1112篇
晶体学   12篇
力学   31篇
数学   154篇
物理学   271篇
  2024年   3篇
  2023年   5篇
  2022年   27篇
  2021年   51篇
  2020年   31篇
  2019年   31篇
  2018年   24篇
  2017年   29篇
  2016年   59篇
  2015年   54篇
  2014年   90篇
  2013年   109篇
  2012年   142篇
  2011年   127篇
  2010年   94篇
  2009年   78篇
  2008年   86篇
  2007年   83篇
  2006年   77篇
  2005年   63篇
  2004年   57篇
  2003年   48篇
  2002年   40篇
  2001年   32篇
  2000年   24篇
  1999年   16篇
  1998年   13篇
  1997年   9篇
  1996年   17篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有1580条查询结果,搜索用时 15 毫秒
41.
42.
Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin–GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.  相似文献   
43.
Improving the electrocatalytic activity and durability of Pt‐based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well‐defined Pd@Pt core–shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4–1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as‐synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well‐defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single‐cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low‐cost and high‐efficient applications of PEMFCs.  相似文献   
44.
Polymer‐based crosslinked networks with intrinsic self‐repairing ability have emerged due to their built‐in ability to repair physical damages. Here, novel dual sulfide–disulfide crosslinked networks (s‐ssPxNs) are reported exhibiting rapid and room temperature self‐healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self‐healable networks utilizes a combination of well‐known crosslinking chemistry: photoinduced thiol‐ene click‐type radical addition, generating lightly sulfide‐crosslinked polysulfide‐based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s‐ssPxNs. The resulting s‐ssPxN networks show rapid self‐healing within 30 s to 30 min at room temperature, as well as self‐healing elasticity with reversible viscoelastic properties. These results, combined with tunable self‐healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials.

  相似文献   

45.
The reaction pathways of 1-propanethiol, 1-propanol, and propylamine molecules, containing a propyl moiety, on a Ge(100) surface were investigated using high-resolution photoemission spectroscopy (HRPES) experiments and density functional theory (DFT) calculations. Upon analysis of the HRPES data, the adsorption of 1-propanethiol and 1-propanol was found to occur through a dissociation reaction, whereas that of propylamine took place via N dative bonding at room temperature. On the basis of our DFT results, adsorption geometries and transition states for each of these molecules on the Ge(100) surface were confirmed. Systematic studies of S-, O-, and N-containing molecules, composed of an identical propyl moiety, on the Ge(100) surface provide insight into the adsorption mechanism of aliphatic molecules containing alkyl chains on the Ge(100) surface.  相似文献   
46.
We demonstrate subcentimeter depth profiling at a stand off distance of 330 m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550 nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation. The system's instrumental response was 70 ps full width at half-maximum, which meant that 1 cm surface-to-surface resolution could be achieved by locating the centroids of each return signal. A depth resolution of 4 mm was achieved by employing an optimized signal-processing algorithm based on a reversible jump Markov chain Monte Carlo method.  相似文献   
47.
Tosa V  Nam CH 《Optics letters》2007,32(18):2707-8; discussion 2709-10
We argue for a different physical interpretation of the results given in the recent Letter by Painter et al. [Opt. Lett.31, 3471 (2006)] in which an elongated Ti:saphire beam with two distinct waists is considered as direct evidence of laser filamentation. As the pulse power is well below the critical power for self-focusing, the authors pleaded for new examination of the n(2) value for He. A three-dimensional numerical modeling, using the published n(2) value for He, reproduces very well the measured data and invalidates the filamentation hypothesis.  相似文献   
48.
Research on Chemical Intermediates - N-Heterocyclic carbene (NHC)-linked PEPPSI-type palladium complexes have recently been used in the direct C-H bond arylation of heteroarenes. However, in most...  相似文献   
49.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   
50.
The CD spectroscopy of a chiral compound in solution yields an average CD value derived from all of the conformations of a chiral molecule. By contrast, CD spectroscopy of cold chiral molecules in the gas phase distinguishes specific conformers of a chiral molecule, but the weak CD effect has limited the practical application of this technique. Reported herein is the first resonant two‐photon ionization CD spectra of ephedrines in a supersonic jet using circularly polarized laser pulses, which were generated by synchronizing the oscillation of the photoelastic modulator with the laser firing. The spectra exhibited well‐resolved CD bands which were specific for the conformations and vibrational modes of each enantiomer. The CD signs and magnitudes of the jet‐cooled chiral molecules were very sensitive to their conformations and thus offered crucial information for determining the three‐dimensional structures of chiral species, as conducted in combination with quantum chemical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号