首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3281篇
  免费   39篇
  国内免费   3篇
化学   2358篇
晶体学   15篇
力学   44篇
数学   479篇
物理学   427篇
  2018年   28篇
  2017年   27篇
  2016年   36篇
  2015年   35篇
  2014年   35篇
  2013年   92篇
  2012年   82篇
  2011年   112篇
  2010年   79篇
  2009年   81篇
  2008年   106篇
  2007年   124篇
  2006年   103篇
  2005年   113篇
  2004年   114篇
  2003年   91篇
  2002年   97篇
  2001年   54篇
  2000年   82篇
  1999年   70篇
  1998年   51篇
  1997年   61篇
  1996年   55篇
  1995年   48篇
  1994年   40篇
  1993年   66篇
  1992年   57篇
  1991年   44篇
  1990年   29篇
  1989年   35篇
  1988年   42篇
  1987年   37篇
  1986年   53篇
  1985年   64篇
  1984年   43篇
  1983年   36篇
  1982年   42篇
  1981年   51篇
  1980年   45篇
  1979年   56篇
  1978年   43篇
  1977年   46篇
  1976年   41篇
  1975年   31篇
  1974年   37篇
  1973年   24篇
  1972年   26篇
  1971年   25篇
  1970年   24篇
  1934年   21篇
排序方式: 共有3323条查询结果,搜索用时 15 毫秒
101.
102.
A new indirect detection scheme for obtaining (15)N/(1)H shift correlation spectra in crystalline proteins is described. Excellent water suppression is achieved without the need for pulsed field gradients, and using only a 2-step phase cycle. Careful attention to overall NMR instrument stability was found critical for obtaining the best resolution and sensitivity. Magnetic dilution by deuteration of the protein in combination with high-speed magic angle spinning produces (1)H resonances averaging only 0.22 ppm in width, and in some cases lines as narrow as 0.17 ppm are obtained. In application to two different polymorphs of ubiquitin, structure dependent differences in both (15)N and (1)H amide chemical shifts are observed. In one case, distinct shifts for different molecules in the asymmetric unit are seen, and all differ substantially from solution NMR shifts. A gain of 7 in sensitivity makes the method competitive with solution NMR as long as nanocrystalline samples are available.  相似文献   
103.
Proteomics is a powerful tool to screen brain protein expression but the methodology is hampered by low abundance of proteins or compartmentalization or overload of high-abundance proteins. It was therefore the aim of the study to determine the expression of brain proteins by using enriched cellular subfractions and pre-electrophoretic chromatographical separation of brain homogenates. We used two-dimensional electrophoresis with subsequent matrix-assisted laser desorption/ionization (MALDI) detection and characterization of brain proteins. Subfractionation into cytosolic, mitochondrial and microsomal compartments was performed by ultracentrifugation. Pre-electrophoretic fractionation of the cytosolic fractions was carried out by ion exchange column chromatography. We detected and identified a large series of 437 proteins in rat brain and have shown proteins specific for the individual subcellular compartments. These proteins included housekeeping, signaling, cytoskeletal, intermediary metabolism, antioxidant proteins on the one and neuron and synaptosomal specific proteins on the other hand. Using fractionations of brain homogenates we were able to improve the power of the method on forming the basis for brain protein expressional studies and providing a reference map as a powerful tool for the neuroscientist.  相似文献   
104.
Transverse relaxation-optimized spectroscopy (TROSY) or generation of heteronuclear multiple quantum coherences during the frequency labeling period and TROSY during the acquisition period have been combined either with cross-correlated relaxation-induced polarization transfer (CRIPT) or cross-correlated relaxation-enhanced polarization transfer (CRINEPT) to obtain two-dimensional (2D) solution NMR correlation spectra of (15)N,(2)H-labeled homo-oligomeric macromolecules with molecular weights from 110 to 800 kDa. With the experimental conditions used, the line widths of the TROSY-components of the (1)H- and (15)N-signals were of the order of 60 Hz at 400 kDa, whereas, for structures of size 800 kDa, the line widths were about 75 Hz for (15)N and 110 Hz for (1)H. This paper describes the experimental schemes used and details of their setup for individual measurements. The performance of NMR experiments with large structures depends critically on the choice of the polarization transfer times, the relaxation delays between subsequent recordings, and the water-handling routines. Optimal transfer times for 2D [(15)N,(1)H]-CRIPT-TROSY experiments in H(2)O solutions were found to be 6 ms for a molecular weight of approximately 200 kDa, 2.8 ms for 400 kDa, and 1.4 ms for 800 kDa. These data validate theoretical predictions of inverse proportionality between optimal transfer time and size of the structure. The proton longitudinal relaxation times in H(2)O solution were found to be of the order of 0.8 s for structure sizes around 200 kDa, 0.4 s at 400 kDa, and 0.3 s at 800 kDa, which enabled the use of recycle times below 1 s. Since improper water handling results in severe signal loss, the water resonance was kept along the z-axis during the entire duration of the experiments by adjusting each water flip-back pulse individually.  相似文献   
105.
Several genome engineering applications of CRISPR‐Cas9, an RNA‐guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small‐molecule systems lack wide dynamic range, have background activity in the absence of the small‐molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high‐intensity light. We previously reported a small‐molecule‐controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next‐generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low‐intensity light while rendering the small‐molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.  相似文献   
106.
Metal Complexes with Biological Important Ligands. CXLVII [1] Structure and Properties of Pfeiffer's Nickel(II) Schiff Base Complex from Salicylaldehyde and Glycine Ester. The structure of the planar nickel(II) complex reported by Paul Pfeiffer with two Schiff base ligands from salicylaldehyde and glycine ethylester and with trans‐NiO2N2 arrangement was determined by X‐ray diffraction. The finding by Pfeiffer that this complex reacts with oxygen to give the bis(O, N‐imine) complex Ni(OC6H4CH=NH)2 under C‐N cleavage could be confirmed by spectroscopic data, and a reaction path is suggested.  相似文献   
107.
N(SCl)2 [MoCl5(NSCl)]?, a Chlorothionitrene Complex of Molybdenum (VI) . The title compound is formed together with MoCl3(N3S2) by the reaction of MoCl4 or MoCl5 with (NSCl)3 in CH2Cl2. The black, crystalline compound was characterized by its i.r. spectrum and an X-ray crystal structure determination. N(SCl)2[MoCl5(NSCl)]? crystallizes in the monoclinic space group P21/n with four formula units per unit cell. The lattice constants are a = 716.3, b = 1627.4, c = 1178.9 pm and β = 100.90°. The [MoCl5(NSCl)]? ion posseses an almost linear Mo = N = S grouping with bond lengths that can be interpreted as double bonds. Crystal data for AsPh4[MoCl5(NSCl)] are reported.  相似文献   
108.
Diiodoacetylene Complexes of Tungsten(IV). Crystal Structure of PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 Tungsten hexachloride and diiodoacetylene react in CCl4 solution forming [WCl4(I? C?C? I)]2 which has a dimer structure with chloro bridges. In CH2Cl2, it reacts with PPh4Cl yielding PPh4[WCl5(I? C?C? I)] · 0.5 CH2Cl2. In both compounds the C2I2 ligands attain a marked increase in thermal stability by their side-one coordination to the tungsten atoms. The crystal structure of the PPh4 salt was determined with X-ray diffraction data (3879 observed reflexions, R = 0.050). PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 crystallizes in the space group P21/n with 8 formula units per unit cell. The lattice constants are a = 1723.0, b = 1681.2, c = 2214.6 pm and β = 94.38°. There are two crystallographically independent [WCl5(C2I2)]? ions which differ only slightly from one another. The C2I2 ligand has a staggered arrangement relative to the W? Cl groups, with C? C bond lengths of 127 pm. The infrared spectra are discussed.  相似文献   
109.
The mechanism of I700 decay, representing an early event in the phytochrome Pr→ Pfr phototransformation, was reanalyzed in the microsecond range by conventional laser flash photolysis as well as by two-laser/two-color flash photolysis. Three kinetic models that might describe the I700 decay mechanism following Pr excitation were considered: a parallel, a sequential, and an equilibrium model. These models were used to mathematically simulate both the one- and two-laser flash experiments in an effort to select the model best describing the I700 decay. The sequential model could be excluded already on the basis of the one-laser flash photolysis results alone. Discussion of the two-laser/two-color flash rcsults in the context of the equilibrium and the parallel models is presented.  相似文献   
110.
Abstract–Thc kinetics of the microsecond phototransformation intermediates of 124 kDa Avena phytochrome (17001,2) were studied in the prcsence of bound monoclonal antibodies at various temperatures. A global analysis was applied to the decays at all wavelengths at each temperature in order to derive the rate constants and the decay-associated spectra of the three decay components. Monoclonal antibodies bound to specific epitopes altered the Arrhenius parameters of both 17001,2 decay components. The strongest influence on these parameters was observed with OAT 8 (epitope between residues 624 and 686), which decreased by more than 50% the activation parameters of both components. This decrease is interpreted to result from an increased flexibility induced by this antibody in the ground state or in the transition state of bonds changing during the decay of both 1700 transients. Thus, the OAT 8 cpitope appears to be functionally important during the decay of the 17001,2 intermediates. For the case of 11001 bound OAT 23 and OAT 25 (epitopes between residues 1 and 66) reduced even further the relatively small flexibility of these bonds in the red light-absorbing form of phytochrome (P1) without antibodies, as reflected by the high preex-ponential factors for its decay. This resulted also in higher activation energies for this decay in the presence of the antibodies. Thus, the amino-terminus should act as a rigid spacer of the chromophore cavity without affecting it during the microsecond transformation, because the Arrhenius parameters for these decays are similar to those for small phytochrome. The possible implications of the influence of the various antibodies on the bleaching remaining after the decay of 17001,2 are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号