全文获取类型
收费全文 | 200篇 |
免费 | 0篇 |
专业分类
化学 | 142篇 |
晶体学 | 1篇 |
力学 | 9篇 |
数学 | 1篇 |
物理学 | 47篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2013年 | 6篇 |
2012年 | 6篇 |
2011年 | 12篇 |
2010年 | 8篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 12篇 |
2006年 | 7篇 |
2005年 | 10篇 |
2004年 | 8篇 |
2003年 | 8篇 |
2002年 | 10篇 |
2000年 | 7篇 |
1999年 | 11篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 5篇 |
1988年 | 2篇 |
1987年 | 6篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 5篇 |
1981年 | 3篇 |
1980年 | 5篇 |
1979年 | 2篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1971年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有200条查询结果,搜索用时 15 毫秒
81.
Junichi Higo Shigeru Endo Kuniaki Nagayama Tomoyoshi Ito Toshiyuki Fukushige Toshikazu Ebisuzaki Daiichiro Sugimoto Hiroo Miyagawa Kunihiro Kitamura Junichiro Makino 《Journal of computational chemistry》1994,15(12):1372-1376
The special-purpose computer GRAPE-2A accelerates the calculation of pairwise interactions in many-body systems. This computer is a back-end processor connected to a host computer through a Versa Module Europe (VME) bus. GRAPE-2A receives coordinates and other physical data for particles from the host and then calculates the pairwise interactions. The host then integrates an equation of motion by using these interactions. We did molecular dynamics simulations for two systems of liquid water: System 1 (1000 molecules), and System 2 (1728 molecules). The time spent for one step of molecular dynamics was 3.9 s (System l), and 10.2 s (System 2). The larger the molecular system, the higher the performance. The speed of GRAPE-2A did not depend on the formula describing the pairwise interaction. The cost performance was about 20 times better than that of the fastest workstations available today, and GRAPE-2A cost only $22,000. © 1994 by John Wiley & Sons, Inc. 相似文献
82.
The dry beads milling of a mixture of 9,10-dipropoxyanthracene (DPA) as an electron donor and surface-modified silica nanoparticles was conducted in the absence or in the presence of a photoacid generator (PAG) as an electron acceptor to give powdery nanocomposites. Fluorescence measurements indicated no mechanochemical change in the crystal structure of DPA after the nanohybridisation. The co-milling with PAG resulted in solid-state fluorescence quenching, whereas quenching efficiency was considerably dependent on the nature of PAG. The solid-state sensitised photoacid generation through the electron transfer was demonstrated by the solid-state photocolouration of leuco-dye of crystal violet lactone. 相似文献
83.
Takahashi M Nagashima M Shigeoka S Kamimura H Kamata K 《Journal of chromatography. A》2002,953(1-2):299-303
Fast ion-exchange chromatography has been developed and applied to the separation of common inorganic anions. Using a didodecyldimethylammonium bromide (DDAB) coated short (30 mm x 4.6 mm) ODS analytical column (3-microm particle size) and a 5 mM phthalate eluent (pH 7.5) the isocratic separation of nine common anions in 160 s was possible, with the first seven anions, including phosphate, chloride and sulphate, separated within 65 s. Detection was achieved using indirect UV at 279 nm. The high capacity, highly hydrophobic ion-exchange coating demonstrated excellent stability over time, even at elevated temperatures (45 degrees C) and exhibited unusual selectivity for common anions (retention order=fluoride, carbonate, phosphate, chloride, bromate, nitrite, sulphate, bromide and nitrate). The developed chromatography was successfully applied to the rapid analysis of river water and seawater samples. 相似文献
84.
Tadashi Inoue Takayuki Onogi Kunihiro Osaki 《Journal of Polymer Science.Polymer Physics》2000,38(7):954-964
The dynamic birefringence and the dynamic viscoelasticity of an oligostyrene, A1000, whose molecular weight (Mw = 1050) was comparable to the Kuhn segment size, MK, were examined near and above the glass‐transition temperature in order to characterize polymeric features of very short chains with M ∼ MK. The complex shear modulus, G*(ω), was similar to that for supercooled liquids: No polymeric modes such as the Rouse mode were detected at low frequencies of viscoelastic spectrum. On the other hand, the strain‐optical coefficient was found to be negative in the terminal flow zone and positive in the glassy zone. Because the negative birefringence of polystyrene is originated by polymeric modes associated with chain orientation, the present results indicate that polymeric modes exist and become dominant for birefringence in the terminal flow. The data were analyzed using a modified stress‐optical rule: The modulus and the strain‐optical ratio were separated into polymeric (rubbery) and glassy components. The total modulus, G*(ω), was mostly due to the glassy component, GG*(ω), resulting in the positive birefringence. GG*(ω) for A1000 agreed with that for high M polystyrenes when compared at a comparable reduced frequency scale. The polymeric component, GR*(ω), giving rise to the negative birefringence was lower than GG*(ω) over the whole frequency range but its contribution to the birefringence exceeded that of the glassy component at low frequencies because of the larger optical anisotropy and longer characteristic relaxation time of the former. The limiting modulus of GR* at high frequencies was about 3 times lower than that for high M polystyrenes, indicating that the main‐chain orientation of the oligostyrene on instantaneous deformation was reduced compared with that of high M polystyrenes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 954–964, 2000 相似文献
85.
Takashima H Yamada S Obara S Kitamura K Inabata S Miyakawa N Tanabe K Nagashima U 《Journal of computational chemistry》2002,23(14):1337-1346
We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the \"RT parallel algorithm.\" The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large-scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well-balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large-scale biological molecules with more than thousands of basis functions. 相似文献
86.
Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation (\"particle processor\") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. 相似文献
87.
Kunihiro Shima 《Physics letters. A》1980,77(4):237-239
Near the threshold energy, electron induced Mn and Cu K-shell ionization cross sections have been measured. Except for energies very close to threshold, the results are in good agreement with the semi-empirical formula of Green and Cosslett. 相似文献
88.
Furumi S Kidowaki M Ogawa M Nishiura Y Ichimura K 《The journal of physical chemistry. B》2005,109(19):9245-9254
This paper describes a simple strategy for the formation of photoaligned and micropatterned discotic liquid crystal (DLC) film on the surface of photoirradiated azobenzene-containing polymer thin film. The key material for the surface-mediated photoalignment of the DLCs was poly[4-(4-cyanophenylazo)phenyl methacrylate] (pMAzCN). Optical anisotropy was generated in a pMAzCN film by oblique exposure to nonpolarized light which resulted in angle-selective photoisomerization and reorientation of the azobenzenes. Subsequent annealing of the film at 240 degrees C enhanced the photoaligned state of the p-cyanoazobenzenes due to strong intermolecular dipole-dipole interaction and semicrystalline nature of the pMAzCN. This combination of photoirradiation and subsequent annealing of the pMAzCN film made it possible to realize the surface-assisted orientation control of a DLC molecule, which displays both columnar (Col) and discotic nematic (N(D)) phases over 152 degrees C. When the pMAzCN film was exposed to linearly polarized light from the surface normal, the DLC molecules showed homeotropic orientation with the director perpendicular to the substrate surface. In the contrast, oblique irradiation of the pMAzCN film with nonpolarized light gave rise to tilted DLC orientation with well-ordered optical birefringence at the N(D) phase. Rapid cooling from the N(D) phase produced a well-aligned glassy N(D) state at room temperature, which was adequately stable for 10 months even though no covalent cross-linking among the DLCs was performed. The spatial orientation of photoaligned DLCs in both their bulk film and in their interface region was characterized by means of optical birefringence, X-ray diffraction, and fluorescence measurements. At the N(D) phase, the DLC molecules were aligned in a hybrid manner such that their tilt angles varied throughout the thickness of DLC film. The direction of tilted DLCs was opposite to the propagation of the actinic nonpolarized light. The photoaligned DLC films exhibited polarized fluorescence emission with an s-polarized/p-polarized intensity ratio of 4.1, despite the nonpolarized excitation of only DLC at outmost surface. These results indicate that the three-dimensionally aligned azobenzene moieties of the pMAzCN thin film were transferred to the tilted DLC molecules at air/DLC interface. Finally, we demonstrated micrometer-scale photopatterned orientation of DLC molecules on the pMAzCN surface by oblique nonpolarized irradiation of the film through a photomask. 相似文献
89.
Dynamic birefringence and dynamic viscoelasticity of poly(4-methyl styrene) and poly(4-t-butyl styrene) were measured to investigate the molecular origin of viscoelasticity around the glass transition zone. The data were analyzed with a modified stress-optical rule: The birefringence and the stress were separated into two component functions of different molecular origins. One component is related to the orientation of the main chain axis and the other one to the rotation of the repeating units about the main chain axis. The strain dependence of the two characteristic orientation functions in the glassy zone was estimated and the orientation mechanism of repeating units was discussed.Dedicated to Prof. John D. Ferry on the occasion of his 85th birthday. 相似文献
90.
T. Yoshida I. Nishi M. Yi D.-H. Lu K. Kihou P.M. Shirage H. Kito C.H. Lee A. Iyo H. Eisaki H. Harima 《Journal of Physics and Chemistry of Solids》2011,72(5):465-468
We have performed an angle-resolved photoemission study of the iron pnictide superconductor KFe2As2 with . Most of the observed Fermi surfaces show almost two-dimensional shapes, while one of the quasi-particle bands near the Fermi level has a strong dispersion along the kz direction, consistent with the result of a band-structure calculation. However, hole Fermi surfaces α and ζ are smaller than those predicted by the calculation while other Fermi surfaces are larger. These observations are consistent with the result of a de Haas-van Alphen study and a theoretical prediction on inter-band scattering, possibly indicating many body effects on the electronic structure. 相似文献