首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
化学   23篇
力学   1篇
数学   3篇
物理学   27篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
The reaction of trimethyl aluminum on the group III rich reconstructions of InAs(0 0 1) and In(0.53)Ga(0.47)As(0?0?1) is observed with scanning tunneling microscopy/spectroscopy. At high coverage, a self-terminated ordered overlayer is observed that provides the monolayer nucleation density required for subnanometer thick transistor gate oxide scaling and removes the surface Fermi level pinning that is present on the clean InGaAs surface. Density functional theory simulations confirm that an adsorbate-induced reconstruction is the basis of the monolayer nucleation density and passivation.  相似文献   
12.
The structural and electronic properties of group III rich In0.53Ga0.47As(001) have been studied using scanning tunneling microscopy/spectroscopy (STM/STS). At room temperature (300 K), STM images show that the In0.53Ga0.47As(001)–(4 × 2) reconstruction is comprised of undimerized In/Ga atoms in the top layer. Quantitative comparison of the In0.53Ga0.47As(001)–(4 × 2) and InAs(001)–(4 × 2) shows the reconstructions are almost identical, but In0.53Ga0.47As(001)–(4 × 2) has at least a 4× higher surface defect density even on the best samples. At low temperature (77 K), STM images show that the most probable In0.53Ga0.47As(001) reconstruction is comprised of one In/Ga dimer and two undimerized In/Ga atoms in the top layer in a double (4 × 2) unit cell. Density functional theory (DFT) simulations at elevated temperature are consistent with the experimentally observed 300 K structure being a thermal superposition of three structures. DFT molecular dynamics (MD) show the row dimer formation and breaking is facilitated by the very large motions of tricoodinated row edge As atoms and z motion of In/Ga row atoms induced changes in As–In/Ga–As bond angles at elevated temperature. STS results show there is a surface dipole or the pinning states near the valence band (VB) for 300 K In0.53Ga0.47As(001)–(4 × 2) surface consistent with DFT calculations. DFT calculations of the band-decomposed charge density indicate that the strained unbuckled trough dimers being responsible for the surface pinning.  相似文献   
13.
Mechanism of copper underpotential deposition at stepped faces of platinum single crystals Pt(hkl) is studied using cyclic voltammetry, scanning probe microscopy, and quantum-chemical modelling. It is shown that the first stage of UPD is one-dimensional decoration of the (100)- or (110)-orientated steps, then copper monolayer forms at (111)-terraces. The final stage is the secondary step decoration. Quantum-chemical modelling, with the using of long-distance potentials of the Cu-Pt and Cu-Cu pair interactions, allows estimating the energy of copper adsorption at different structure elements of the substrate (steps, kinks, terraces) and revealing the succession of the adatom monolayer formation; it also provides additional information for the identifying of the nature of voltametric peaks for different stages of the copper adsorption-desorption.  相似文献   
14.
The gas-surface reaction dynamics of NO impinging on an iron(II) phthalocyanine (FePc) monolayer were investigated using King and Wells sticking measurements. The initial sticking probability was measured as a function of both incident molecular beam energy (0.09-0.4 eV) and surface temperature (100-300 K). NO adsorption onto FePc saturates at 3% of a monolayer for all incident beam energies and surface temperatures, suggesting that the final chemisorption site is confined to the Fe metal centers. At low surface temperature and low incident beam energy, the initial sticking probability is 40% and decreases linearly with increasing beam energy and surface temperature. The results are consistent with the NO molecule sticking onto the FePc molecules via physisorption to the aromatics followed by diffusion to the Fe metal center, or precursor-mediated chemisorption. The adsorption mechanism of NO onto FePc was confirmed by control studies of NO sticking onto metal-free H2Pc, inert Au111, and reactive Al111.  相似文献   
15.
非线性涡黏性系数模型和代数应力模型联系了线性涡黏性系数湍流模型和完整的微分 雷诺应力模型.随着它们受到日益关注,其形式也越来越多样化.本篇综述的目的是对这些模 型加以总结并比较它们之间的共同点及不同之处,指出它们与完整微分雷诺应力模型之间的 关系,以及相对于线性涡黏性系数模型而言它们在预报流场上所具有的优势.  相似文献   
16.
Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the α-particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.  相似文献   
17.
18.
Interfacial bonding geometry and electronic structures of In(2)O on InAs and In(0.53)Ga(0.47)As(001)-(4×2) have been investigated by scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS). STM images show that the In(2)O forms an ordered monolayer on both InAs and InGaAs surfaces. In(2)O deposition on the InAs(001)-(4×2) surface does not displace any surface atoms during both room temperature deposition and postdeposition annealing. Oxygen atoms from In(2)O molecules bond with trough In/Ga atoms on the surface to form a new layer of O-In/Ga bonds, which restore many of the strained trough In/Ga atoms into more bulklike tetrahedral sp(3) bonding environments. STS reveals that for both p-type and n-type clean In(0.53)Ga(0.47)As(001)-(4×2) surfaces, the Fermi level resides near the valence band maximum (VBM); however, after In(2)O deposition and postdeposition annealings, the Fermi level position is close to the VBM for p-type samples and close to the conduction band minimum for n-type samples. This result indicates that In(2)O bonding eliminates surface states within the bandgap and forms an unpinned interface when bonding with In(0.53)Ga(0.47)As/InP(001)-(4×2). Density function theory is used to confirm the experimental finding.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号