首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   15篇
  国内免费   1篇
化学   508篇
晶体学   8篇
力学   8篇
数学   68篇
物理学   96篇
  2023年   5篇
  2022年   6篇
  2021年   13篇
  2020年   14篇
  2019年   18篇
  2018年   7篇
  2017年   7篇
  2016年   16篇
  2015年   20篇
  2014年   18篇
  2013年   28篇
  2012年   42篇
  2011年   48篇
  2010年   31篇
  2009年   35篇
  2008年   36篇
  2007年   29篇
  2006年   41篇
  2005年   40篇
  2004年   28篇
  2003年   30篇
  2002年   20篇
  2001年   9篇
  2000年   13篇
  1999年   11篇
  1998年   9篇
  1997年   4篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1990年   3篇
  1989年   4篇
  1985年   3篇
  1984年   7篇
  1981年   5篇
  1979年   3篇
  1978年   4篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1965年   3篇
  1959年   2篇
  1958年   2篇
  1955年   2篇
  1909年   2篇
  1887年   2篇
排序方式: 共有688条查询结果,搜索用时 15 毫秒
611.
The frustrated Lewis pair B(C(6)F(5))(3)/P(o-tolyl)(3) (4a) reacts with 4,6-decadiyne to give the trans-1,2-addition product 5. In contrast, the B(C(6)F(5))(3)/P(t)Bu(3) FLP (4b) reacts with this substrate to give the trans-1,4-adduct trans-6. The cumulene trans-6 undergoes trans-/cis-isomerization upon photolysis to give a ca. 1:1 trans-6/cis-6 mixture. The FLP 4b reacts with 2,6-hexadiyne at r.t. to yield a ca. 4:1 mixture of their trans-1,2- and trans-1,4-addition products (7,8). DFT calculations showed that the zwitterionic 1,4-addition products are favored under thermodynamic control. Thermolysis of the kinetic trans-1,2-addition product (7) (80 °C, bromobenzene) does not lead to the thermodynamically favored 1,4-isomer (8), but instead elimination of isobutylene occurs to the formal trans-1,2-adduct (9) of the B(C(6)F(5))(3)/PH(t)Bu(2) pair. Compounds 5, 6, 7, 8, 9 were analyzed by X-ray diffraction.  相似文献   
612.
Accurate force fields are essential for reproducing the conformational and dynamic behavior of condensed-phase systems. The popular AMBER force field has parameters for monophosphates, but they do not extend well to polyphorylated molecules such as ADP and ATP. This work presents parameters for the partial charges, atom types, bond angles, and torsions in simple polyphosphorylated compounds. The parameters are based on molecular orbital calculations of methyldiphosphate and methyltriphosphate at the RHF/6-31+G* level. The new parameters were fit to the entire potential energy surface (not just minima) with an RMSD of 0.62 kcal/mol. This is exceptional agreement and a significant improvement over the current parameters that produce a potential surface with an RMSD of 7.8 kcal/mol to that of the ab initio calculations. Testing has shown that the parameters are transferable and capable of reproducing the gas-phase conformations of inorganic diphosphate and triphosphate. Also, the parameters are an improvement over existing parameters in the condensed phase as shown by minimizations of ATP bound in several proteins. These parameters are intended for use with the existing AMBER 94/99 force field, and they will permit users to apply AMBER to a wider variety of important enzymatic systems.  相似文献   
613.
Despite the extensive employment of binary/ternary mixed-carbonate electrolytes (MCEs) for Li-ion batteries, the role of each ingredient with regards to the solvation structure, transport properties, and reduction behavior is not fully understood. Herein, we report the atomistic modeling and transport property measurements of the Gen2 (1.2 M LiPF6 in ethylene carbonate (EC) and ethyl methyl carbonate (EMC)) and EC-base (1.2 M LiPF6 in EC) electrolytes, as well as their mixtures with 10 mol% fluoroethylene carbonate (FEC). Due to the mixing of cyclic and linear carbonates, the Gen2 electrolyte is found to have a 60% lower ion dissociation rate and a 44% faster Li+ self-diffusion rate than the EC-base electrolyte, while the total ionic conductivities are similar. Moreover, we propose for the first time the anion–solvent exchange mechanism in MCEs with identified energetic and electrostatic origins. For electrolytes with additive, up to 25% FEC coordinates with Li+, which exhibits a preferential reduction that helps passivate the anode and facilitates an improved solid electrolyte interphase. The work provides a coherent computational framework for evaluating mixed electrolyte systems.

The different roles of the anion, cyclic and linear carbonates, and additive in mixed-carbonate electrolytes are revealed. The anion–solvent exchange mechanism and factors influencing the solid electrolyte interphase (SEI) formation are deciphered.  相似文献   
614.
In earlier work, de novo designed peptides with a helix-loop-helix motif and 63 residues have been synthesized as potential scaffolds for stabilization of the [Ni(II)-X-Fe(4)S(4)] bridged assembly that is the spectroscopically deduced structure of the A-Cluster in clostridial carbon monoxide dehydrogenase. The 63mers contain a consensus tricysteinyl ferredoxin domain in the loop for binding an Fe(4)S(4) cluster and Cys and His residues proximate to the loop for binding Ni(II), with one Cys residue designed as the bridge X. The metallopeptides HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M, containing three His and one Cys residue for Ni(II) coordination and two His and two Cys residues for binding M = Ni(II) and Co(II), have been examined by Fe-, Ni-, and Co-K edge spectroscopy and EXAFS. All peptides bind an [Fe(4)S(4)](2+) cubane-type cluster. Interpretation of the Ni and Co data is complicated by the presence of a minority population of six-coordinate species with low Z ligands, designated for simplicity as [M(OH(2))(6)](2+). Best fits of the data were obtained with ca. 20% [M(OH(2))(6)](2+) and ca. 80% M(II) with mixed N/S coordination. The collective XAS results for HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M demonstrate the presence of an Fe(4)S(4) cluster and support the existence of the distorted square-planar coordination units [Ni(II)(S.Cys)(N.His)(3)] and [Ni(II)(S.Cys)(2)(N.His)(2)] in the HC(4)H(2) and HC(5)H metallopeptides, respectively. In the HC(5)H metallopeptide, tetrahedral [Co(II)(S.Cys)(2)(N.His)(2)] is present. We conclude that the designed scaffolded binding sites, including Ni-(mu(2)-S.Cys)-Fe bridges, have been achieved. This is the first XAS study of a de novo designed metallopeptide intended to stabilize a bridged biological assembly, and one of a few XAS analyses of metal derivatives of designed peptides. The scaffolding concept should be extendable to other bridged metal assemblies.  相似文献   
615.
We have developed a receptor-based pharmacophore method which utilizes a collection of protein structures to account for inherent protein flexibility in structure-based drug design. Several procedures were systematically evaluated to derive the most general protocol for using multiple protein structures. Most notably, incorporating more protein flexibility improved the performance of the method. The pharmacophore models successfully discriminate known inhibitors from drug-like non-inhibitors. Furthermore, the models correctly identify the bound conformations of some ligands. We used unliganded HIV-1 protease to develop and validate this method. Drug design is always initiated with a protein-ligand structure, and such success with unbound protein structures is remarkable - particularly in the case of HIV-1 protease, which has a large conformational change upon binding. This technique holds the promise of successful computer-based drug design before bound crystal structures are even discovered, which can mean a jump-start of 1-3 years in tackling some medically relevant systems with computational methods.  相似文献   
616.
Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP‐regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP‐competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2‐phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first‐generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules’ effects on Hsp90 enzymatic, conformational, co‐chaperone and client‐binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary.  相似文献   
617.
618.
We report the synthesis of a hydrophilic copolymer with one polyethylene glycol (PEG) block and one β‐cyclodextrin (β‐CD) containing block by a “click” reaction between azido‐substituted β‐CD and propargyl flanking copolymer. 1H NMR study suggested a highly efficient conjugation of β‐CD units by this approach. The obtained copolymer was used as a host macromolecule to construct assemblies in the presence of hydrophobic guests. For assemblies containing a hydrophobic polymer, their size can be simply adjusted by simply changing the content of hydrophobic component. By serving as a guest molecule, hydrophobic drugs can also be loaded accompanying the formation of nanoparticles, and the drug payload is releasable. Therefore, the copolymer synthesized herein can be employed as a carrier for drug delivery.  相似文献   
619.
The structure of {3‐[(4‐fluoro­phenyl)­methyl]‐1H‐benzimidazol‐2‐ylidene}{1‐[2‐(4‐meth­oxy­phenyl)­ethyl]‐4‐piperidin‐1‐io}ammonium tetra­chloro­cuprate(II), (C28H33FN4O)[CuCl4], contains diprotonated cations of astemizole hydrogen bonded to three Cl atoms in two different CuCl42? anions, with Cl?N distances in the range 3.166 (4)–3.203 (4) Å. The geometry around copper is flattened tetrahedral with significantly different Cu—Cl distances which lie in the range 2.1968 (14)–2.2861 (12) Å. The phenyl­ethyl C atoms of the (4‐methoxy­phenyl­)ethyl group are disordered indicating the presence of two conformers in the crystals.  相似文献   
620.
The crystal structure of the title compound, [Me2NHC2H4NHMe2][SePh]2 or C6H18N22+·2C6H5Se?, reveals hydrogen bonding between the benzene­seleno­late anions and the tetra­methyl­ethyl­ene­di­ammonium cations. The asymmetric unit contains one formula unit of the title compound. The two Se?H distances are 2.22 (4) and 2.34 (4) Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号