首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   4篇
化学   171篇
晶体学   1篇
力学   1篇
数学   22篇
物理学   24篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   12篇
  2013年   14篇
  2012年   20篇
  2011年   20篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   17篇
  2006年   16篇
  2005年   12篇
  2004年   16篇
  2003年   13篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1977年   2篇
  1965年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
161.
1,2-Bis(2'-pyridylethynyl)benzenebromonium triflate (4) and bis(pyridine)bromonium triflate (5) have been prepared and the mechanism of their reaction with various acceptors including eight alkenes of various structure, collidine, and Br(-) are reported. The reaction of 4 with neutral acceptors is second-order overall and involves a preequilibrium dissociation of the bidentate-bound Br(+) to form an unstable monodentate open form (4-op), which reacts with all neutral acceptors at or near the diffusion limit. Br(-) reacts with 4 by a different mechanism involving a direct nucleophilic attack on the Br(+). The reaction of 5 with acceptors proceeds by a dissociative mechanism to reversibly form an unstable intermediate (pyr-Br(+)), which reacts with 4-penten-1-ol, 4-pentenoic acid adamantylidineadamantane and cyclohexene with nearly the same selectivity. The crystal and molecular structures of bis(2,4,6-collidine)bromonium perchlorate (2-ClO(4)) and 5 were determined by X-ray crystallography.  相似文献   
162.
A method for the spatially selective biofunctionalization of silicon micro- and nanostructures is reported, and results are presented for both single-crystal silicon (111) or (100) surfaces. An electroactive monolayer of hydroquinone was formed on the surface of H-terminated silicon working electrodes via an olefin reaction with UV-generated surface radicals. Molecules presenting either cyclopentadiene or a thiol group can be immobilized onto the regions where the hydroquinone has been oxidized. Molecular size and crystal orientation are evaluated as important factors that dictate the electrode stability in aqueous solution under anodic potentials. Monolayers composed of smaller molecules on (111) surfaces exhibit the highest packing density and are more effective in preventing anodic oxidation of the underlying substrate. Voltammetry, X-ray photoelectron spectroscopy, and atomic force and fluorescence microscopy are utilized to interrogate the kinetic rates of biofunctionalization, the extent of surface coverage, monolayer quality, and the spatial selectivity of the process.  相似文献   
163.
The results of mechanistic studies on formation of uridine (U) and N-acetyl-in-(5-uridinyl)tyrosine N-ethylam-ide (2) from irradiation of aqueous, pH 7 solutions of bromouridine (BrU) and N-acetyltyrosine JV-ethylamide (1) are reported. Solutions were irradiated with monochromatic laser emission at 266, 308 and 325 nm. Quantum yield measurements as a function of excitation wavelength suggest that both products result from excitation of the tyrosine derivative followed by electron transfer to BrU, possibly with intermediacy of the hydrated electron. The BrU radical anion ejects bromide to form the uri-dinyl radical, which then abstracts a hydrogen atom from 1 or adds to the aromatic ring of 1. Formation of adduct 2 is a model for photocrosslinking of nucleic acids bearing the bromouracil chromophore to adjacent tyrosine residues of proteins in nucleoprotein complexes. The value of 325 nm excitation in photocrosslinking, where the tyrosine chromophore is more competitive for photons, was demonstrated with an RNA bound to the MS2 bacteriophage coat protein; more than a 60% increase in the yield of photocrosslinking relative to that obtained with 308 nm excitation was achieved.  相似文献   
164.
The diffusion coefficients of hematite particles in polyelectrolyte solution have been investigated using dynamic light scattering. Two apparent diffusion coefficients, a fast and a slow diffusional mode, are observed for the hematite particles in high-molecular-weight sodium polyacrylate solution at pH 10.5. The slow diffusion coefficient (Dslow) shows a decrease with increase in polyelectrolyte concentration. The fast diffusion coefficient (Dfast) shows an increase to a maximum with increasing polyelectrolyte concentration and then a rapid decrease as the polyelectrolyte concentration increases further. With an increase in ionic strength from 10(-4) to 0.1 M NaNO3, the maximum value of Dfast increased in magnitude, while the polyacrylate concentration at which the maximum occurs is seen to increase. The dependence of Dfast on the measurement angle indicates that it is coupled to the fluctuations of the chains. The observed behavior is attributed to the hematite probe particle sensing both macroscopic (viscous) and elastic fluctuations associated with the polyelectrolyte motion.  相似文献   
165.
Secor KE  Glass TE 《Organic letters》2004,6(21):3727-3730
[reaction: see text] A boronic acid-containing coumarin aldehyde was designed and synthesized. The sensor binds to catecholamines such as dopamine and norepinephrine by forming an iminium ion with the amine as well as a boronate ester with the catechol. An internal hydrogen bond produces a colorimetric response to these analytes with good selectivity for catecholamines over simple amines. The fluorescence of the sensor is quenched by the catechol.  相似文献   
166.
The thermal stability of organically modified silicates (Ormosils) is limited by that of their organic constituent. In the case of the polydimethylsiloxane (PDMS)-silica hybrids, degradation of the PDMS begins around 250°C, which restricts their range of applications. Several strategies have been used to stabilize PDMS, such as substitution of the methyl groups by phenyl groups. Another strategy is the addition of very small amounts (typically about 1 wt%) of iron. This technique has been used successfully in the stabilization of liquid silicones. In the case of PDMS-SiO2 hybrids, this small dopant concentration has a very significant effect on the thermal stability, increasing it by up to 200°C. However, very little is known of the mechanism of stabilization. In the present work we carry out an investigation of the materials in order to explain the mechanisms involved. The materials were investigated by liquid and solid state 29Si NMR, BET, SEM, TGA and DMA. The data indicates that Fe plays a most significant role at the solution stage already. The structures of the hybrids with and without Fe are very different. In other words, the thermal stabilization mechanism appears to be due not so much a direct redox process taking place in the solid state (as in the case of liquid silicones) but rather, to differences in chemical structures induced by Fe in the liquid. Specifically, PDMS chain cleavage and increased cross-linking to SiO2 appear to be the cause of the thermal stabilization.  相似文献   
167.
Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.  相似文献   
168.
Nylon-6 is selectively depolymerized to the parent monomer ϵ-caprolactam by the readily accessible and commercially available lanthanide trisamido catalysts Ln(N(TMS)2)3 (Ln=lanthanide). The depolymerization process is solvent-free, near quantitative, highly selective, and operates at the lowest Nylon-6 to ϵ-caprolactam depolymerization temperature reported to date. The catalytic activity of the different lanthanide trisamides scales with the Ln3+ ionic radius, and this process is effective with post-consumer Nylon-6 as well as with Nylon-6+polyethylene, polypropylene or polyethylene terephthalate mixtures. Experimental kinetic data and theoretical (DFT) mechanistic analyses suggest initial deprotonation of a Nylon terminal amido N−H bond, which covalently binds the catalyst to the polymer, followed by a chain-end back-biting process in which ϵ-caprolactam units are sequentially extruded from the chain end.  相似文献   
169.
The emergence of multidrug‐resistant (MDR) pathogens represents one of the most urgent global public health crises. Light‐activated quantum dots (QDs) are alternative antimicrobials, with efficient transport, low cost, and therapeutic efficacy, and they can act as antibiotic potentiators, with a mechanism of action orthogonal to small‐molecule drugs. Furthermore, light‐activation enhances control over the spatiotemporal release and dose of the therapeutic superoxide radicals from QDs. However, the limited deep‐tissue penetration of visible light needed for QD activation, and concern over trace heavy metals, have prevented further translation. Herein, we report two indium phosphide (InP) QDs that operate in the near‐infrared and deep‐red light window, enabling deeper tissue penetration. These heavy‐metal‐free QDs eliminate MDR pathogenic bacteria, while remaining non‐toxic to host human cells. This work provides a pathway for advancing QD nanotherapeutics to combat MDR superbugs.  相似文献   
170.
Bioconjugation has allowed scientists to combine multiple functional elements into one biological or biochemical unit. This assembly can result in the production of constructs that are targeted to a specific site or cell type in order to enhance the response to, or activity of, the conjugated moiety. In the case of cancer treatments, selectively targeting chemotherapies to the cells of interest limit harmful side effects and enhance efficacy. Targeting through conjugation is also advantageous in delivering treatments to difficult-to-reach tissues, such as the brain or infections deep in the lung. Bacterial infections can be more selectively treated by conjugating antibiotics to microbe-specific entities; helping to avoid antibiotic resistance across commensal bacterial species. In the case of vaccine development, conjugation is used to enhance efficacy without compromising safety. In this work, we will review the previously mentioned areas in which bioconjugation has created new possibilities and advanced treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号