首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   6篇
  国内免费   1篇
化学   493篇
晶体学   2篇
力学   6篇
数学   17篇
物理学   159篇
  2022年   6篇
  2021年   8篇
  2016年   9篇
  2015年   5篇
  2013年   17篇
  2012年   12篇
  2011年   19篇
  2010年   11篇
  2009年   7篇
  2008年   10篇
  2007年   26篇
  2006年   22篇
  2005年   20篇
  2004年   27篇
  2003年   16篇
  2002年   27篇
  2001年   26篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   21篇
  1995年   14篇
  1994年   15篇
  1993年   12篇
  1992年   15篇
  1990年   13篇
  1989年   15篇
  1988年   9篇
  1987年   15篇
  1986年   5篇
  1985年   8篇
  1984年   15篇
  1983年   15篇
  1982年   13篇
  1981年   17篇
  1980年   19篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1975年   7篇
  1974年   6篇
  1973年   8篇
  1972年   8篇
  1971年   9篇
  1970年   6篇
  1968年   7篇
  1961年   6篇
  1959年   4篇
  1933年   4篇
排序方式: 共有677条查询结果,搜索用时 15 毫秒
581.
582.
Neutral impact collision ion scattering spectroscopy under normal incidence is known to yield the concentration depth profiles of all elements except hydrogen at the surface of liquids and other amorphous material. In the evaluation of the data one tactically has to assume that the top surface layer and the adjacent layers are laterally homogeneous. In the present paper we establish that the angular resolved mode of this spectroscopy is able to test with high accuracy whether the lateral homogeneity is valid and-if this is not the case-in which way the top layer is structured. In particular, it is possible to map out the local environment of selected atoms. We expect that this so far inaccessible information on the local topography at liquid surfaces will have an impact on the understanding of reactions at the gas/liquid interface.  相似文献   
583.
For melt-spun metallic CoxZr100–x glasses (22x53) the total pair correlation functionG(r) has been derived from X-ray diffraction measurements. In most samples, the first maximum ofG(r) can be resolved into two single maxima belonging to the Co–Zr and Zr–Zr nearest-neighbor distance, respectively. Partial correlation numbers are estimated in the whole concentration range. The density of the samples has been measured with a buoyancy method. It is compared to those of otherM–Zr glasses (M=Fe, Ni, Cu) and to predictions deduced from Miedema's model of alloy formation.  相似文献   
584.
585.
The electron density distribution of the molecular pyroelectric material phosphangulene has been studied by multipolar modeling of X-ray diffraction data. The "in-crystal" molecular dipole moment has been evaluated to 4.7 D corresponding to a 42% dipole moment enhancement compared with the dipole moment measured in a chloroform solution. It is substantiated that the estimated standard deviation of the dipole moment is about 0.8 D. The standard uncertainty (s.u.) of the derived dipole moment has been derived by splitting the dataset into three independent data-sets. A novel method for obtaining pyroelectric coefficients has been introduced by combining the derived dipole moment with temperature-dependent measurements of the unit cell volume. The derived pyroelectric coefficient of 3.8(7) x 10-6 Cm 2K-1 is in very good agreement with the measured pyroelectric coefficient of p = 3 +/- 1 x 10-6 Cm-2 K-1. This method for obtaining the pyroelectric coefficient uses information from the X-ray diffraction experiment alone and can be applied to much smaller crystals than traditional methods.  相似文献   
586.
Ag6B10S18: A Novel Thioborate with Tetrahedral Coordination of Boron Ag6B10S18 was prepared as a novel thioborate from the reaction of stoichiometric amounts of Ag2S, B, and S at 700°C with successive annealing at 580–460°C. The orange-yellow compound crystallizes in the monoclinic space group C2/c with a = 21.663(8), b = 21.639(8), c = 16.572(5) Å, ß = 129.40(4)°, Z = 8, dx = 2.948 g · cm?3. According to the complete X-ray crystal structure analysis the anionic part of the Ag6B10S18 structure contains B10S20 “supertetrahedra” consisting of ten parallel corner-sharing BS4 tetrahedra; the B10S20 groups are linked through corners to form a layer-like arrangement of (B10S16S4/26?)n = (B10S186?)n polyantions. The mean B? S bond length is 1.915 Å. The electron densities in the regions of the Ag+ ions show a dynamically disordered arrangement which can be described by a distribution of the 6 Ag+ ions of the asymmetric unit over 18 partially occupied sites, these structural characteristics making Ag6B10S18 an Ag+ ionic conductor. The i.r. spectrum of the compound shows B? S stretching vibrations at 610, 640, 685, 735, and 760 cm?1.  相似文献   
587.
588.
Crystal Structures of Pb4SeBr6, Pb5S2I6, and Pb7S2Br10. The crystal structures of Pb4SeBr6, Pb5S2I6 and Pb7S2Br10 have been determined from single crystal X-ray analyses. Unit cell data see “Inhaltsübersicht”. The compounds have common structural features with the pure halides of lead. In Pb4SeBr6 all Pb atoms have trigonal prismatic coordination by Br(Se), additional neighbours above the prism faces completing the coordination number to 7, 8 or 9. In Pb5S2I6 some of the Pb atoms are surrounded by 6 I + 1 S or 5 I + 3 S in the same extended trigonal prismatic arrangement, others are in the centers of PbI6 octahedra. Pb7S2Br10 is isostructural with Th7S12 with statistical occupancy of part of the metal and nonmetal positions.  相似文献   
589.
The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.  相似文献   
590.
Calcium may have a static, structure‐stabilizing role in biological organs like the bones and the teeth, or may fulfill a dynamic function in cells as a regulator of signal‐transduction pathways. This is made possible by the properties of the Ca2+ ion (e.g., high dehydration rate, great flexibility in coordinating ligands, largely irregular geometry of the coordination sphere). Since Ca2+ is a universal carrier of signals, the control of its homeostasis is of central importance for the organism. It involves exchanges between the skeleton (which is the major calcium reservoir) and the extracellular and intracellular fluids. It also involves the intestine and the kidney, the organs of Ca absorption and release, respectively. The highly integrated homeostasis process consists of a number of hormonally controlled feedback loops, and an elaborate system of membrane channels, exchangers, and pumps that control the Ca2+ flux into and out of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号