首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   99篇
  国内免费   3篇
化学   663篇
晶体学   4篇
力学   5篇
数学   28篇
物理学   261篇
  2023年   5篇
  2022年   7篇
  2021年   14篇
  2020年   24篇
  2019年   28篇
  2018年   18篇
  2017年   17篇
  2016年   43篇
  2015年   39篇
  2014年   40篇
  2013年   43篇
  2012年   41篇
  2011年   56篇
  2010年   49篇
  2009年   28篇
  2008年   55篇
  2007年   41篇
  2006年   26篇
  2005年   41篇
  2004年   30篇
  2003年   25篇
  2002年   23篇
  2001年   23篇
  2000年   21篇
  1999年   14篇
  1998年   5篇
  1997年   14篇
  1996年   11篇
  1995年   10篇
  1994年   11篇
  1993年   17篇
  1992年   20篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   9篇
  1987年   8篇
  1985年   12篇
  1984年   8篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1968年   5篇
  1967年   3篇
  1934年   2篇
排序方式: 共有961条查询结果,搜索用时 31 毫秒
51.
Highly enantioselective catalytic oxidation of 1‐tetralone‐derived β‐keto esters was achieved by using a guanidine–urea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP), a safe, commercially available oxidant. The α‐hydroxylation products were obtained in 99 % yield with up to 95 % enantiomeric excess (ee). The present oxidation was successfully applied to synthesize a key intermediate of the anti‐cancer agent daunorubicin ( 2 ).  相似文献   
52.
A fluoride-responsive (FR) amino acid that induces amide bond cleavage upon the addition of a fluoride was developed, and it was applied to an FR traceable linker. By the use of an alkyne-containing peptide as a model of an alkynylated target protein of a bioactive compound, introduction of the FR traceable linker onto the peptide was achieved. Subsequent fluoride-induced cleavage of the linker followed by labeling of the released peptide derivative was also conducted to examine the potential applicability of the FR traceable linker to the enrichment and labeling of alkynylated target molecules.  相似文献   
53.
The reactions of aromatic compounds and elemental chalcogens catalyzed by a copper salt with molecular oxygen as an oxidant were carried out. The reaction of 3‐substituted imidazo[1,5‐a]pyridines and elemental sulfur in the presence of CuTC (copper(I) thiophenecarboxylate) gave the corresponding bisimidazopyridyl sulfides in good to quantitative yields. The reaction proceeded even under aerobic oxidation conditions. The use of a polar solvent was crucial for the reaction, and DMSO (dimethyl sulfoxide) in particular stimulated the reaction. The reaction could be applied to common aromatic compounds, such as N‐methyl indole and dialkyl anilines. The reaction of indole proceeded at the nucleophilic C3 position rather than at the acidic C2 position. In addition, the reaction of dialkyl anilines proceeded with an ortho, para orientation. The reactions of imidazopyridines and elemental selenium under similar conditions gave the corresponding bisimidazopyridyl diselenides along with bisimidazopyridyl monoselenides. The resulting diselenides were readily converted to the corresponding monoselenides with unreacted imidazopyridines under the same conditions. The reaction could be applied to the copolymerization of bifunctional bisimidazopyridines and elemental sulfur to give oligomeric copolymers in quantitative yield.  相似文献   
54.
Borocarbonitrides (BxCyNz) with a graphene‐like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid‐state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon‐rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100 cycles) and rate capability over widely varying current density values (0.05–1 A g?1). B0.15C0.73N0.12 has a very high specific capacity of 710 mA h g?1 at 0.05 A g?1. With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900 mA h g?1 at 0.05 A g?1. It is believed that the solid–electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .  相似文献   
55.
We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.  相似文献   
56.
Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.  相似文献   
57.
58.
Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116 % when the concentration of alkoxide precursors was decreased and increased by 241 % when the template formation temperature was decreased to 10 °C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation.  相似文献   
59.
A2B‐type B‐methoxy subporphyrins 3 a – g and B‐phenyl subporphyrins 7 a – c , e , g bearing meso‐(2‐substituted)aryl substituents are synthesized, and their rotational dynamics are examined through variable‐temperature (VT) 1H NMR spectroscopy. In these subporphyrins, the rotation of meso‐aryl substituents is hindered by a rationally installed 2‐substituent. The rotational barriers determined are considerably smaller than those reported previously for porphyrins. Comparison of the rotation activation parameters reveals a variable contribution of ΔH and ΔS in ΔG. 2‐Methyl and 2‐ethyl groups of the meso‐aryl substituents in subporphyrins 3 e , 3 f , and 7 e induce larger rotational barriers than 2‐alkoxyl substituents. The rotational barriers of 3 g and 7 g are reduced by the presence of the 4‐dibenzylamino group owing to its ability to stabilize the coplanar rotation transition state electronically. The smaller rotational barriers found for B‐phenyl subporphyrins than for B‐methoxy subporphyrins indicate a negligible contribution of SN1‐type heterolysis in the rotation of meso‐aryl substituents.  相似文献   
60.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号