首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2704篇
  免费   52篇
  国内免费   4篇
化学   1782篇
晶体学   31篇
力学   60篇
数学   401篇
物理学   486篇
  2022年   23篇
  2021年   33篇
  2020年   33篇
  2019年   26篇
  2017年   19篇
  2016年   43篇
  2015年   50篇
  2014年   48篇
  2013年   81篇
  2012年   100篇
  2011年   101篇
  2010年   59篇
  2009年   57篇
  2008年   89篇
  2007年   103篇
  2006年   98篇
  2005年   64篇
  2004年   51篇
  2003年   47篇
  2002年   53篇
  2001年   35篇
  2000年   38篇
  1999年   35篇
  1998年   35篇
  1997年   42篇
  1996年   41篇
  1995年   52篇
  1994年   49篇
  1993年   55篇
  1992年   45篇
  1991年   50篇
  1990年   40篇
  1989年   50篇
  1988年   47篇
  1987年   49篇
  1986年   35篇
  1985年   47篇
  1984年   57篇
  1983年   36篇
  1982年   34篇
  1981年   47篇
  1980年   25篇
  1979年   50篇
  1978年   44篇
  1977年   40篇
  1976年   40篇
  1975年   39篇
  1974年   31篇
  1973年   39篇
  1972年   22篇
排序方式: 共有2760条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
105.
106.
107.
108.
By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in the CB mode severely underpredicts both the drop formation time and the average heat transfer rate through the drop.  相似文献   
109.
110.
The synthesis of Cu(core)Pt(shell) model catalysts by the direct electrochemical deposition of Pt on Cu particles is presented. Cu particles with an average diameter of 200 nm have been deposited on glassy‐carbon electrodes by double pulse electrodeposition from a copper sulfate solution. Subsequent deposition from a platinum nitrate solution under potential control allows for a high selectivity of the Pt deposition towards Cu. Using a combination of cyclic voltammetry, XPS and sputtering, the structure of the generated particles has been analyzed and their core–shell configuration proven. It is shown that the electrocatalytic activity for the oxygen reduction is similar to that of other PtCu catalyst systems. The synthesized structures could allow for the analysis of structure–activity relations of core–shell catalysts on the way to the simple and controlled synthesis of supported Cu(core)Pt(shell) nanoparticles as oxygen reduction catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号