首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1883篇
  免费   54篇
  国内免费   6篇
化学   1530篇
晶体学   31篇
力学   27篇
数学   60篇
物理学   295篇
  2023年   8篇
  2022年   19篇
  2021年   16篇
  2020年   24篇
  2019年   25篇
  2018年   17篇
  2016年   30篇
  2015年   31篇
  2014年   39篇
  2013年   114篇
  2012年   87篇
  2011年   99篇
  2010年   74篇
  2009年   68篇
  2008年   117篇
  2007年   89篇
  2006年   112篇
  2005年   100篇
  2004年   81篇
  2003年   84篇
  2002年   111篇
  2001年   30篇
  2000年   22篇
  1999年   31篇
  1998年   16篇
  1997年   24篇
  1996年   28篇
  1995年   23篇
  1994年   18篇
  1993年   22篇
  1992年   18篇
  1991年   17篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   13篇
  1985年   37篇
  1984年   26篇
  1983年   15篇
  1982年   28篇
  1981年   20篇
  1980年   27篇
  1979年   23篇
  1978年   17篇
  1977年   18篇
  1976年   19篇
  1975年   15篇
  1973年   12篇
  1972年   8篇
排序方式: 共有1943条查询结果,搜索用时 296 毫秒
51.
Collision energy dependence of partial ionization cross sections (CEDPICS) of p-benzoquinone with He(*)(2 (3)S) metastable atoms indicates that interaction potentials between p-benzoquinone and He(*)(2 (3)S) are highly anisotropic in the studied collision energy range (100-250 meV). Attractive interactions were found around the C==O groups for in-plane and out-of-plane directions, while repulsive interactions were found around CH bonds and the benzenoid ring. Assignment of the first four ionic states of p-benzoquinone and an analogous methyl-substituted compound was examined with CEDPICS and anisotropic distributions of the corresponding two nonbonding oxygen orbitals (n(O) (+),n(O) (-)) and two pi(CC) orbitals (pi(CC) (+),pi(CC) (-)). An extra band that shows negative CEDPICS was observed at ca. 7.2 eV in Penning ionization electron spectrum.  相似文献   
52.
1,4‐Bis(4‐benzylpyridinium)butadiyne triflate was aggregated in dimethylformamide and spontaneously converted into the 1,4‐addition type of polydiacetylene. The polymerization took place in a dipolar aprotic solvent with a large dielectric constant that could enhance the aggregation of the ionic diacetylene salt through the electrostatic interaction. The molecular weight of the diacetylene was leveled off after 30 h at 80 °C to reach 1.5 × 104 (number‐average molecular weight) that consisted of the 1,4‐addition type of polydiacetylene similar to polydiacetylenes obtained in the conventional solid‐state polymerization. Electron spin resonance spectra revealed that diradicals were generated at the earlier state aggregation to give rise to a solution polymerization. The UV spectra also suggested the presence of the activated aggregation associated with the polymerization as well as the eximer emission spectra. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3534–3541, 2002  相似文献   
53.
Penning ionization electron spectroscopy and CNDO/S calculations have been successfully applied to the analyses of the UV photoelectron spectra of 2- and 2,5-bistrimethylsilylthiophene and 2-t-butylthiophene. The relative intensities of the π type bands are greatly enhanced in the Penning spectra compared with those of the UV photoelectron spectra.  相似文献   
54.
55.
The Mössbauer spectra of Sm2Fe17Nx, prepared by the nitrogenation of Sm2Fe17 powders in an ammonia and hydrogen atmosphere, were observed at elevated temperatures to shed light on the thermal behavior of nitrogen in the compounds Sm2Fe17Nx. It was found that there were large differences in thermal behavior between the starting Sm2Fe17, crystalline Sm2Fe17Nx (x≈1.7) and amorphous Sm2Fe17Nx(x~7). The thermal decomposition behavior of Sm2Fe17N3.2, developed as one of the most promising hard magnetic materials, was found to be different under different atmospheres.  相似文献   
56.
The infrared spectra of the water-nitrogen complexes trapped in argon matrices have been studied with Fourier transform infrared absorption spectroscopy. The absorption lines of the H20-N2 1:1, 1:2, 1:n, and 2:1 complexes have been confirmed on the basis of the concentration effects. In addition, we have observed a few lines and propose the assignments for the 2:2, 2:3, and 2:4 complexes in the nu1 symmetric stretching and nu2 bending regions of the proton-acceptor molecule, and in the bonded OH stretching region of the proton-donor molecule. The redshifts in the bonded OH stretching mode and blueshifts in the OH bending mode suggest that the hydrogen bonds in the (H2O)2-(N2)n complexes with n = 1-4 are strengthened by the cooperative effects compared to the pure H2O dimer. Two absorption bands due to the 3:n complexes are also observed near the bonded OH stretching region of the H2O trimer.  相似文献   
57.
The solvent-free reactions of fullerenes and N-alkylglycines with and without aldehydes (RCHO) 2a-e under high-speed vibration milling (HSVM) conditions have been investigated. Fulleropyrrolidines 4a-e (C60(CH2N(CH3)CHR), R=H (4a), C6H5 (4b), p-NO2-C6H4 (4c), p-CH3O-C6H4 (4d), p-(CH3)2N-C6H4 (4e)) were obtained in moderate yields from reactions of C60 with aldehydes 2a-e and N-methylglycine (Prato reaction). In all these solvent-free reactions, 4a was found to be formed besides 4b-e, indicating that fullerenes can react with N-substituted glycines in the absence of aldehyde to give fulleropyrrolidines. For this novel reaction, a possible reaction mechanism involving an electron transfer process has been proposed. Intrigued by this observation, the dependence of the yield on the reagent ratio for the reaction of C60 with paraformaldehyde and/or N-methylglycine was examined to search the optimal conditions. The reaction of C70 with paraformaldehyde and/or N-methylglycine under HSVM conditions was also studied and was found to give the positional isomers of [70]fulleropyrrolidines.  相似文献   
58.
Faradaic, impedances at model electrodes partially covered with a photoresist layer have been studied theoretically and experimentally. Equations for the faradaic impedance are derived based on the theoretical model and approach described in Part I of this series of papers. Experimental data for the hexacyanoferrate system at various model electrodes give excellent agreement, with theoretical predictions for the diffusion impedance behavior, and the applicability of the derived equations to the estimation of the degree of coverage and the size of the active regions is confirmed. Furthermore, the application of such model electrodes to the kinetic study of electrode reactions with high heterogeneous charge transfer rates is suggested.  相似文献   
59.
Structures of the complexes formed in aqueous solutions between zinc(II) and iodide ions have been determined from large-angle X-ray scattering, Raman and far-IR measurements. The coordination in the hydrated Zn2+ hexaaqua ion and the first iodide complex, [ZnI]+, is octahedral, but is changed into tetrahedral in the higher complexes, [ZnI2(H2O)2], [ZnI3(H2O)] and [ZnI4]2–. The Zn-I bond length is 2.635(4)Å in the [ZnI4]2– ion and slightly shorter, 2.592(6)Å, in the two lower tetrahedral complexes. In the octahedral [ZnI(H2O)5]+ complex the Zn-I bond length is 2.90(1)Å. The Zn-O bonding distances in the complexes are approximately the same as that in the hydrated Zn2+ ion, 2.10(1)Å.  相似文献   
60.
The infrared spectra of the carbon monoxide-water cluster as well as the CO monomer and dimer in an argon matrix at cryogenic temperatures have been reinvestigated on the basis of the isotope substitution experiment with 12CO and 13CO. Lines due to the CO-H2O 2-1 cluster in the matrix have been unambiguously identified in the CO and OH stretching regions. The isotope effect on the vibrational frequency of the cluster is observed in the CO stretching vibration but neither in the symmetric nor antisymmetric OH stretching vibrations. Each of the two vibrational lines due to the two CO vibrations of the CO-H2O 2-1 cluster is examined by comparing the expected spectral features at a 12CO/13CO ratio on a simulation with those observed experimentally. The migration of the trapped molecules (CO and H2O) in the matrix is discussed, in which the observed spectral change with the deposition temperature from 14 K to 30 K is explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号