全文获取类型
收费全文 | 139篇 |
免费 | 7篇 |
专业分类
化学 | 98篇 |
晶体学 | 1篇 |
物理学 | 47篇 |
出版年
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 1篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 8篇 |
2011年 | 13篇 |
2010年 | 9篇 |
2009年 | 4篇 |
2008年 | 11篇 |
2007年 | 8篇 |
2006年 | 8篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
Adhikary A Kumar A Munafo SA Khanduri D Sevilla MD 《Physical chemistry chemical physics : PCCP》2010,12(20):5353-5368
By use of ESR and UV-vis spectral studies, this work identifies the protonation states of one-electron oxidized G:C (viz. G˙+:C, G(N1–H)˙:C(+H+), G(N1–H)˙:C, and G(N2-H)˙:C) in a DNA oligomer d[TGCGCGCA]2. Benchmark ESR and UV-vis spectra from one electron oxidized 1-Me-dGuo are employed to analyze the spectral data obtained in one-electron oxidized d[TGCGCGCA]2 at various pHs. At pH ≥7, the initial site of deprotonation of one-electron oxidized d[TGCGCGCA]2 to the surrounding solvent is found to be at N1 forming G(N1–H)˙:C at 155 K. However, upon annealing to 175 K, the site of deprotonation to the solvent shifts to an equilibrium mixture of G(N1–H)˙:C and G(N2–H)˙:C. For the first time, the presence of G(N2–H)˙:C in a ds DNA-oligomer is shown to be easily distinguished from the other prototropic forms, owing to its readily observable nitrogen hyperfine coupling (Azz(N2) = 16 G). In addition, for the oligomer in H2O, an additional 8 G N2–H proton HFCC is found. This ESR identification is supported by a UV-vis absorption at 630 nm which is characteristic for G(N2–H)˙ in model compounds and oligomers. We find that the extent of photo-conversion to the C1′ sugar radical (C1′˙) in the one-electron oxidized d[TGCGCGCA]2 allows for a clear distinction among the various G:C protonation states which can not be easily distinguished by ESR or UV-vis spectroscopies with this order for the extent of photo-conversion: G˙+:C > G(N1–H)˙:C(+H+) ? G(N1–H)˙:C. We propose that it is the G˙+:C form that undergoes deprotonation at the sugar and this requires reprotonation of G within the lifetime of exited state 相似文献
142.
143.
The azide ligand has been receiving intense attention in the rapid growth of literature in the field of molecular magnetism. Primarily, azide ion functions as a bridging ligand and magnetic coupler of paramagnetic metal ions. This review is centered on the study of diverse structural and magnetic properties of copper(II) azido complexes. Some of the trends identified could serve as a privileged starting point for the further development of this promising area. 相似文献
144.
145.
Saikat Ghosh Rathnakaram Siva Kumar Raju Nilanjana Ghosh Koel Chaudhury Sampad Ghosh Indranil Banerjee Nabakumar Pramanik 《Comptes Rendus Chimie》2019,22(1):46-57
Nowadays locoregional therapy for cancer treatment can be associated with nanocomposite drug delivery systems. Coated nanoparticles have versatile applications for delivering chemotherapeutic drugs to the targeted part of the body. In this study, a ceramic carrier like nanosized hydroxyapatite (HAp) was synthesized by the in situ precipitation method followed by coating with anticancer drug like doxorubicin (DOX) and polyvinyl alcohol (PVA) polymer. The physicochemical characterization of the prepared polymer-coated drug ceramic nanocomposite (DOX-HAp-PVA) was carried out using Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron spectroscopy, and particle size distribution. Furthermore, the biocompatibility and the anticancer activity of the nanocomposite were explored by MTT assay study. Successfully synthesized DOX-HAp-PVA nanocomposite exhibited a remarkable cytotoxicity toward osteosarcoma cells (MG 63), which may be potentially used as an anticancer agent against osteosarcoma. 相似文献
146.
Based on hybrid density functional theory (DFT) calculations, we propose a new two-dimensional (2D) B-C-N material, graphitic- (g- ), with the promising prospect of metal-free photocatalysis. We find it to be a near ultraviolet (UV) absorbing direct band gap (3.69 eV) semiconductor with robust dynamical and mechanical stability. Estimating the band positions with respect to water oxidation and hydrogen reduction potential levels along with a detailed analysis of reaction mechanism of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), we observe that g- monolayer can be efficiently used for hydrogen fuel generation over entire pH range as well as for spontaneous water splitting at basic pH range. Upon biaxial strain application, band positions get realigned along with the free energy change that is involved in HER and OER. Consequently, operational range of pH for OER gets broadened and the proposed material exhibits the ability to perform spontaneous and simultaneous oxidation and reduction even in neutral pH. The combination of pH variation and applied strain can be used as a key to control the reducing and/or oxidizing abilities precisely for diverse photocatalytic reactions to attain environmental sustainability. 相似文献