首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
数学   1篇
物理学   43篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1992年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
Based on recent experimental observations and numerical simulations [1-4], we develop an analytical theory of spontaneous low-threshold mode-locking in a long homogeneously-broadened fiber laser with slow relaxation of inversion. We show that the phenomenon originates from the self-consistent parametric resonance and beat-frequency-locking of paired hot modes taking place due to coherent nonlinear effects in the system of active two-level centers. An important role of the Risken-Nummedal-Graham-Haken [5-7] multimode instability is discussed.  相似文献   
12.
We study the possibility of spontaneous formation of a polarization structure in a thermodynamically equilibrium gas of dipolarly interacting two-level molecules. Using the Maxwell-Bloch equations within the framework of the mean-field theory, we find that the antiferroelectric phase transition in a gas with a weak relaxation of the polarization is always a second-order transition. It is shown that if relaxation is neglected, then in the quasi-classical consideration of the translational motion of molecules in the polarization wave, the energy levels of a separate molecule coincide with its quasi-energies that are well known in quantum optics. Thus, to study the statistical properties of the antiferroelectric phase, we apply the generalized Gibbs distribution over quasi-energy states of the molecules. As a result, we determine the characteristic features and the possible parameters of the antiferroelectric state of a gas. In particular, it is found that, owing to the Doppler resonance of part of the molecules with the polarization wave, the properties of the gas antiferroelectrics behind the phase-transition point may radically differ from the properties of the conventional ferroelectrics in the Ginzburg-Landau theory. We also analyze the influence of polarization fluctuations for the case of a ferroelectric transition in a gas.  相似文献   
13.
Modeling of atomic and cyclotron lines in the emergent spectra of rotating neutron stars with various distributions of temperature over the star surface is carried out. General and special relativity effects are taken into account in the radiation transfer calculations. A novel method of analysis based on the Fourier series expansion of the observed spectra over rotation frequencies is proposed. It is shown that the mutual influence of the gravitational bending of light rays and rotation of the star leads to the formation of strong features (sometimes several features at once) in the Fourier-harmonic spectrum, whereas these features remain almost invisible in both the integrated and dynamic spectra. Possible application of the obtained results to the interpretation of absorption features in the spectrum of the single neutron star 1E 1207.4 − 5209 is discussed.  相似文献   
14.
It is believed that the detection of gamma-ray bursts from evaporating primordial black holes is highly improbable in the near future since the expected photon flux, consisting mainly of photons with energies ? GeV, is too low. Contrary to this point of view, we show that a large fraction of the black hole power at the final stage of evaporation (the last 103 s) can be liberated as a burst of soft γ-ray emission of duration 10?1–103 s and luminosity 1028–1031 erg/s in the energy range 0.1–1 MeV. According to our calculations of the black hole evaporation rate (within the Standard Model of elementary particles), when the black hole temperature exceeds approximately 10 GeV, the charged particle outflow from a black hole forms a well-defined plasma and can be described in the hydrodynamic approximation. In this case more than half of the rest energy of a black hole can be converted into soft gamma-rays due to the presence of the magnetic field with energy density comparable to that of charged particles. We consider various mechanisms leading to such transformation and estimate their efficiency. It is shown that, at least, some of the gamma-ray bursts detected by BATSE can be associated with evaporating black holes.  相似文献   
15.
A new hyperbolic metamaterial based on a modified semiconductor Bragg mirror structure with embedded periodically arranged quantum wells is proposed. It is shown that exciton polaritons in this material feature hyperbolic dispersion in the vicinity of the second photonic band gap. Exciton–photon interaction brings about resonant nonlinearity leading to the emergence of nontrivial topological polaritonic states. The formation of spatially localized breather-type structures (oscillons) representing kink-shaped solutions of the effective Ginzburg–Landau–Higgs equation slightly oscillating along one spatial direction is predicted.  相似文献   
16.
The nonlinear dynamic interaction of high-power microwave radiation with a high-purity compensated silicon sample, driven or not by a laser pulse initiating nonequilibrium photoconductivity, has been investigated numerically. It is shown that this effect can be used in semiconductor switches of the phase of electromagnetic waves in the presence of strong thermal self-action of microwaves. Original Russian Text ? G.G. Denisov, Vl.V. Kocharovsky, M.L. Kulygin, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 1, pp. 98–102.  相似文献   
17.
We study the generation of femtosecond superradiance (SR) pulses under continuous pumping, caused by the collective recombination of electron-hole (eh) pairs in quantum wells placed into a strong magnetic field that is perpendicular to the quantum-well plane. Such a superradiant semiconductor laser can operate even at room temperature owing to the complete quantization of the moving particles, the maximum possible spectral density of carrier states, the high volume density of effective cyclotron quantum dots, and the partial suppression of intraband scattering. In a multilayer laser heterostructure having an optical confinement factor of the order of 0.2 and located in a magnetic field of 10-50 T, generation of a quasi-periodic or chaotic sequence of coherent pulses with a peak power about 1 W, pulse duration about 100 fs, and a period-to-duration ratio of order 10 is expected. It is shown that dichromatic superradiant generation of a pair of modes resonant to two neighboring transitions between the corresponding electron and hole Landau levels is possible over a broad range of pumping powers. We performed numerical and analytical studies of monochromatic and dichromatic superradiance thresholds including studies with allowance for their modification caused by inhomogeneous broadening due to thickness fluctuations of the quantum wells and barriers in actual heterostructures.  相似文献   
18.
Radiophysics and Quantum Electronics - We perform qualitative physical analysis and particle-in-cell two-dimensional numerical simulation of the Weibel mechanism of magnetic-field generation due to...  相似文献   
19.
We have studied the features of formation and the possible stationary structures of a self-consistent magnetic field in a relativistic collisionless plasma, which are characteristic of a simple geometry of the Weibel instability that is well known in the nonrelativistic case. The universal condition is established, the growth rate is determined, and the criteria of saturation of the Weibel instability are analyzed for a broad class of anisotropic particle distribution functions (for definiteness, in application to an electron-positron plasma). A nonlinear equation of the Grad-Shafranov type describing the potential current structures is derived and its solutions are analytically studied. Special attention is paid to spatially harmonic, nonlinear current configurations with parameters determined by the properties of the initial homogeneous plasma subject to the Weibel instability. It is demonstrated that the magnetic field energy density in the obtained solutions (both harmonic and nonharmonic) can be comparable with the kinetic energy density of plasma particles.  相似文献   
20.
We investigate photoluminescence from a high-density electron-hole plasma in semiconductor quantum wells created via intense femtosecond excitation in a strong perpendicular magnetic field, a fully quantized and tunable system. At a critical magnetic field strength and excitation fluence, we observe a clear transition in the band-edge photoluminescence from omnidirectional output to a randomly directed but highly collimated beam. In addition, changes in the linewidth, carrier density, and magnetic field scaling of the photoluminescence spectral features correlate precisely with the onset of random directionality, indicative of cooperative recombination from a high-density population of free carriers in a semiconductor environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号