首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   5篇
  国内免费   3篇
化学   124篇
力学   13篇
数学   27篇
物理学   38篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   6篇
  2008年   16篇
  2007年   17篇
  2006年   15篇
  2005年   17篇
  2004年   13篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
排序方式: 共有202条查询结果,搜索用时 46 毫秒
91.
Transient changes in the real and imaginary component of the complex permittivity of a flash-photolyzed solution can be monitored with nanosecond time resolution using the time-resolved microwave conductivity (TRMC) technique. Effects caused by rapid (picosecond), flip—flop switching between dipolar resonance structures in the S1 and T1 states of molecules with mirror symmetry have been observed.  相似文献   
92.
93.
94.
The hydration of two simple organic solutes has been studied using the molecular dynamics (MD) computer simulation method. Results of the simulations of a single 1,4-dioxane or 1,3-dioxane molecule dissolved in 122 water molecules are compared with those of a MD simulation of an empty cavity of corresponding size in 216 water molecules. This yields the opportunity to trace the specific effects of the polar and dispersion solute-solvent interactions on the properties of the water molecules in the hydration shell of the solute.

The hydration shell properties of 1,4-dioxane (μ) = 0·14 D) are very similar to those of the corresponding cavity, whereas those of 1,3-dioxane (μ) = 1·91 D) show significant deviations. Earlier conclusions that water structure-making and water structure-breaking properties of 1,4-dioxane are about equally balanced, while 1,3-dioxane is definitely structure-breaking, are confirmed. Moreover, it is shown that a slower self-diffusion and reorientation of water molecules upon addition of a cosolvent does not necessarily point at structure-making properties, additional to those that are already induced by the cavity formation. The introduction of an empty cavity also slows down self-diffusion and molecular reorientation in the hydration shell.  相似文献   
95.
The purpose of this note is to correct an error in an earlier paper by the author about the level sets of the Takagi function (Monatsh Math 167:311–331, 2012), and to prove a stronger form of one of the main results of that paper.  相似文献   
96.
The palette used in two paintings by Paul Cézanne, L'étang des soeurs dated c. 1875 and La route tournante, made in the last year of his life (1902), were analyzed using non-invasive spectroscopic methods. X-ray fluorescence combined with principal components analysis (PCA) and supported by reflectance near- and mid-FTIR was shown to be a powerful analytical tool to draw conclusions about the chemical identification of inorganic materials in paintings. Pigments and fillers such us Thénard's blue, Prussian blue, red ochre, kaolin, vermilion, lead white, zinc white and barium sulphate, were identified. Evidence for three different pigments, namely a copper arsenite pigment, chrome green (a mixture of chrome yellow and Prussian blue) and viridian has been obtained by the PCA analysis of elemental compositions of green hues.  相似文献   
97.
Pentacyano-N,N-dimethylaniline (PCDMA) does not undergo an intramolecular charge transfer (ICT) reaction, even in the strongly polar solvent acetonitrile (MeCN), in clear contrast to 4-(dimethylamino)benzonitrile (DMABN). Within the twisted ICT (TICT) model, this is unexpected, as the electron affinity of the pentacyanobenzene moiety of PCDMA is much larger than that of the benzonitrile subgroup in DMABN. According to the TICT model, the energy of the ICT state of PCDMA would be 2.05 eV (~16550 cm(-1)) lower than that of DMABN, on the basis of the reduction potentials E(A(-)/A) of pentacyanobenzene (-0.29 V vs saturated calomel electrode (SCE)) and benzonitrile (-2.36 V vs SCE), more than enough to compensate for the decrease in energy of the locally excited (LE) state of PCDMA (E(S(1)) = 19990 cm(-1)) relative to that of DMABN (E(S(1)) = 29990 cm(-1)). This absence of a LE → ICT reaction shows that the TICT hypothesis does not hold for PCDMA in the singlet excited state, similar to what was found for DMABN, N-phenylpyrrole, and their derivatives. In this connection, the six dicyano-substituted dimethylanilines are also discussed. The energy gap ΔE(S(1),S(2)) between the two lowest singlet excited states is, at 7170 cm(-1) for PCDMA in MeCN, considerably larger than that for DMABN (2700 cm(-1) in n-hexane, smaller in MeCN). The absence of ICT is therefore in accord with the planar ICT (PICT) model, which considers a sufficiently small ΔE(S(1),S(2)) to be an important condition determining whether an ICT reaction will take place. The fluorescence quantum yield of PCDMA is very small: Φ(LE) = 0.0006 in MeCN at 25 °C, predominantly due to LE → S(0) internal conversion (IC), as the intersystem crossing yield Φ(ISC) is practically zero (<0.01). From the LE fluorescence decay time of 27 ps for PCDMA in MeCN at 25 °C, a radiative rate constant k(f)(LE) = 2 × 10(7) s(-1) results, comparable to the k(f)(LE) of DMABN (6.5 × 10(7) s(-1)) and 2,4,6-tricyano-N,N-dimethylaniline (TCDMA) (1.2 × 10(7) s(-1)) in this solvent, but clearly larger than the k'(f)(ICT) = 0.79 × 10(7) s(-1) of DMABN in MeCN. The IC reaction with PCDMA in MeCN at room temperature, with a rate constant k(IC) of 3.6 × 10(10) s(-1), is much faster than with TCDMA (25 × 10(7) s(-1)) and DMABN (1.3 × 10(7) s(-1), in n-hexane). This is connected with the nonzero (37°) amino twist angle of PCDMA, which leads to a decrease of the effective LE-S(0) energy gap. The femtosecond excited state absorption (ESA) spectra of PCDMA in MeCN at 22 °C are similar to the LE ESA spectra of TCDMA and DMABN and are therefore attributed to the LE state, confirming that an ICT reaction does not occur. The decay of the LE ESA spectra of PCDMA is single exponential, with a decay time of 22 ps, in reasonable agreement with the LE fluorescence decay time of 27 ps at 25 °C. The spectra decay to zero, showing that there is no triplet or other intermediate.  相似文献   
98.
99.
We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ~45% polarization for [1-(13)C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ~13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature.  相似文献   
100.
We study a method for controlling the flow of excitation through decaying levels in a three-level ladder excitation scheme in Na(2) molecules. Like the stimulated Raman adiabatic passage (STIRAP), this method is based on the control of the evolution of adiabatic states by a suitable delayed interaction of the molecules with two radiation fields. However, unlike STIRAP, which transfers a population between two stable levels g and f via a decaying intermediate level e through the interaction of partially overlapping pulses (usually in a Lambda linkage), here the final level f is not long lived. Therefore, the population reaching level f decays to other levels during the transfer process. Thus, rather than controlling the transfer into level f, we control the flow of the population through this level. In the present implementation a laser P couples a degenerate rovibrational level in the ground electronic state X 1Sigma(g)+, v" = 0, j" = 7 to the intermediate level A 1Sigma(u)+, v' = 10, J' = 8, which in turn is linked to the final level 5 1Sigma(g)+, v = 10, J = 9 by a laser S, from which decay occurs to vibrational levels in the electronic A and X states. As in STIRAP, the maximum excitation flow through level f is observed when the P laser precedes the S laser. We study the influence of the laser parameters and discuss the consequences of the detection geometry on the measured signals. In addition to verifying the control of the flow of population through level f we present a procedure for the quantitative determination of the fraction kappa(f) of molecules initially in the ground level which is driven through the final level f. This calibration method is applicable for any stepwise excitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号