首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2171篇
  免费   150篇
  国内免费   10篇
化学   1915篇
晶体学   16篇
力学   37篇
数学   79篇
物理学   284篇
  2023年   28篇
  2022年   20篇
  2021年   42篇
  2020年   59篇
  2019年   43篇
  2018年   47篇
  2017年   27篇
  2016年   76篇
  2015年   60篇
  2014年   94篇
  2013年   98篇
  2012年   152篇
  2011年   213篇
  2010年   95篇
  2009年   97篇
  2008年   137篇
  2007年   117篇
  2006年   126篇
  2005年   116篇
  2004年   100篇
  2003年   72篇
  2002年   78篇
  2001年   52篇
  2000年   37篇
  1999年   24篇
  1998年   12篇
  1997年   14篇
  1996年   10篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   20篇
  1991年   15篇
  1990年   19篇
  1989年   15篇
  1988年   14篇
  1987年   13篇
  1986年   10篇
  1985年   15篇
  1984年   7篇
  1982年   6篇
  1981年   8篇
  1979年   13篇
  1977年   8篇
  1976年   12篇
  1975年   6篇
  1974年   15篇
  1973年   10篇
  1971年   5篇
  1967年   7篇
排序方式: 共有2331条查询结果,搜索用时 156 毫秒
61.
Cover Picture     
The cover picture shows a section of the electron charge density of the first metal carbide endohedral metallofullerene (Sc(2)C(2))@C(84) obtained from a synchrotron X-ray powder diffraction study by the maximum entropy method (MEM). The several density maxima, which correspond to scandium and carbon atoms, are clearly seen inside the C(84) carbon cage. The MEM charge density distribution also reveals that the C(84) cage has D(2d) symmetry (no. 23) and that the C(2) axis is parallel to the <100> face-centered cubic (fcc) direction of the unit cell. As a consequence of the site symmetry being 4mm, the C(2) axis of (Sc(2)C(2))@C(84) is oriented to six equivalent <100> directions and shows a merohedral disorder. The resultant Sc small middle dot small middle dot small middle dotSc distances and C-C bond lengths of the Sc(2)C(2) cluster are 0.429(2) and 0.142(6) nm, respectively. The observed C-C bond length is between that of a typical single and a double bond, and is very close to that of the C-C bond (0.143 nm) combining two pentagons in a C(60) molecule. More about this fascinating structure can be found in the contribution by Shinohara and co-workers on p. 397 ff.  相似文献   
62.
The unambiguous assignment of the aromatic ring resonances in proteins has been severely hampered by the inherently poor sensitivities of the currently available methodologies developed for uniformly 13C/15N-labeled proteins. Especially, the small chemical shift differences between aromatic ring carbons and protons for phenylalanine residues in proteins have prevented the selective observation and unambiguous assignment of each signal. We have solved all of the difficulties due to the tightly coupled spin systems by preparing regio-/stereoselectively 13C/2H/15N-labeled phenylalanine (Phe) and tyrosine (Tyr) to avoid the presence of directly connected 13C-1H pairs in the aromatic rings. The superiority of the new labeling schemes for the assignment of aromatic ring signals is clearly demonstrated for a 17 kDa calcium binding protein, calmodulin.  相似文献   
63.
Reaction pathways in the enzymatic formation and cleavage of the N-N and N-O bonds, respectively, are difficult to verify without the structure of the intermediates, but we now have such information on the heme a(3)(2+)-NO species formed in the reaction of ba(3)-oxidase with NO from resonance Raman spectroscopy. We have identified the His-heme a(3)(2+)-NO/Cu(B)(1+) species by its characteristic Fe-NO and N-O stretching frequencies at 539 and 1620 cm(-)(1), respectively. The Fe-NO and N-O frequencies in ba(3)-oxidase are 21 and 7 cm(-)(1) lower and higher, respectively, than those observed in Mb-NO. From these results and earlier Raman and FTIR measurements, we demonstrate that the protein environment of the proximal His384 that is part of the Q-proton pathway controls the strength of the Fe-His384 bond upon ligand (CO vs NO) binding. We also show by time-resolved FTIR spectroscopy that Cu(B)(1+) has a much lower affinity for NO than for CO. We suggest that the reduction of NO to N(2)O by ba(3)-oxidase proceeds by the fast binding of the first NO molecule to heme a(3) with high-affinity, and the second NO molecule binds to Cu(B) with low-affinity, producing the temporal co-presence of two NO molecules in the heme-copper center. The low-affinity of Cu(B) for NO binding also explains the NO reductase activity of the ba(3)-oxidase as opposed to other heme-copper oxidases. With the identification of the His-heme a(3)(2+)-NO/Cu(B)(1+) species, the structure of the binuclear heme a(3)-Cu(B)(1+) center in the initial step of the NO reduction mechanism is known.  相似文献   
64.

AISM Data Library

AISM Data 43-3-01 Seismograms of foreshocks of 1982 Urakawa-oki earthquake  相似文献   
65.
66.
67.
(-)-Quinine-catalyzed intramolecular oxo-Michael addition (IMA) of 7-hydroxy-5-methoxy-8-tigloylcoumarins was developed for the enantioselective construction of 2,3-dimethyl-4-chromanone systems in the context of the asymmetric synthesis of anti-HIV-1 active Calophyllum coumarins. Combination of the IMA and MgI(2)-assisted demethylation of the 5-methoxy group along with isomerization of the formed chromanone systems as key steps successfully led to the concise synthesis of (+)-inophyllum B and (+)-calanolide A, possible candidates for AIDS drugs. Further examination of the asymmetric IMA with cinchona alkaloids lacking a methoxy group on the quinoline skeleton suggested the influence of the methoxy substituent on stereoselectivity at the stereogenic centers of the chromanone systems.  相似文献   
68.
The Ni-based alloys, such as Ni-Co, Ni-Mn, Ni-Ag, Ni-Cu, Ni-Al and Ni-Si, prepared by hot isostatic pressing (HIP) at 1000 °C under 2 × 108 Pa for 2 h were employed as the anodes for electrolytic production of NF3. The current efficiencies for NF3 formation were 42-38, 52-40, 52-47, 63-62, 50 and 41% for Ni-Co, Ni-Mn, Ni-Ag, Ni-Cu, Ni-Al and Ni-Si alloys, respectively. The current efficiencies only on Ni-Cu alloys with Cu concentrations lower than 10 mol% were almost the same as those on Ni sheet and HIPed Ni anodes, whereas those on the other alloys used in this study were smaller compared with those on both Ni anodes. On the other hand, the current losses caused by anodic dissolution of Ni-Co, Ni-Mn, Ni-Ag, Ni-Cu, Ni-Al and Ni-Si alloy electrodes were 7.95-4.42, 6.40-7.02, 5.60-6.30, 3.34-6.33, 5.10 and 0.18%, respectively. The anode consumptions of Ni-5 mol% Cu and Ni-5 mol% Si alloys were almost the same or smaller compared with those of Ni sheet and HIPed Ni electrodes, though those of other alloys used were large compared with those of both Ni anodes. Consequently, addition of Cu to the nickel matrix is available for a cheaper cost of anode with keeping a same current efficiency as that on the Ni anode and addition of Si to the nickel matrix is effective for decreasing anode consumption largely. A Ni sheet electrode containing a trace of impurities, such as Co, Mn, Ag and Al, is also favorable as the anode for electrolytic production of NF3.  相似文献   
69.
The first isolation and spectroscopic characterization of the mononuclear hydroperoxo-iron(III) complex [Fe(H(2)bppa)(OOH)](2+) (2) and the stoichiometric oxidation of substrates by the mononuclear iron-oxo intermediate generated by its decomposition have been described. The purple species 2 obtained from reaction of [Fe(H(2)bppa)(HCOO)](ClO(4))(2) with H(2)O(2) in acetone at -50 degrees C gave characteristic UV-vis (lambda(max) = 568 nm, epsilon = 1200 M(-1) cm(-1)), ESR (g = 7.54, 5.78, and 4.25, S = (5)/(2)), and ESI mass spectra (m/z 288.5 corresponding to the ion, [Fe(bppa)(OOH)](2+)), which revealed that 2 is a high-spin mononuclear iron(III) complex with a hydroperoxide in an end-on fashion. The resonance Raman spectrum of 2 in d(6)-acetone revealed two intense bands at 621 and 830 cm(-1), which shifted to 599 and 813 cm(-1), respectively, when reacted with (18)O-labeled H(2)O(2). Reactions of the isolated (bppa)Fe(III)-OOH (2) with various substrates (single turnover oxidations) exhibited that the iron-oxo intermediate generated by decomposition of 2 is a nucleophilic species formulated as [(H(2)bppa)Fe(III)-O*].  相似文献   
70.
Treatment of 1,1‐bis(pinacolatoboryl)ethene with an excess of 1‐bromo‐1‐lithioethene gave 2,3‐bis(pinacolatoboryl)‐1,3‐butadiene in high yield. Palladium‐catalyzed cross‐coupling of the resulting diborylbutadiene with aryl iodides took place smoothly in the presence of a catalytic amount of Pd(OAc)2/PPh3 and aqueous KOH to give 2,3‐diaryl‐1,3‐butadienes in good yields. The coupling reaction with commercially available 4‐acetoxyphenylmethyl chloride under the same conditions followed by hydrolysis of the acetyl groups gave anolignan B in a one‐pot manner. A variety of [3]‐ to [6]dendralenes were synthesized by palladium‐catalyzed coupling of the diene or 1,1‐bis(pinacolato)borylethene with alkenyl or dienyl halides, respectively, in good yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号