首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   15篇
  国内免费   4篇
化学   516篇
晶体学   2篇
力学   16篇
数学   58篇
物理学   192篇
  2022年   8篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   30篇
  2012年   23篇
  2011年   60篇
  2010年   23篇
  2009年   10篇
  2008年   40篇
  2007年   49篇
  2006年   50篇
  2005年   52篇
  2004年   41篇
  2003年   33篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   6篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   14篇
  1991年   9篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   6篇
  1977年   11篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
  1972年   5篇
  1969年   4篇
  1939年   4篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
241.
Cisplatin is a potent anticancer drug with low solubility in water. A new type of highly stable polymer micelles, namely core-surface-crosslinked nanoparticles (SCNPs) made from amphiphilic brush copolymers, were evaluated as the carrier of cisplatin. Cisplatin could be loaded in the SCNPs with poly(varepsilon-caprolactone) (PCL) cores and hydrophilic poly(ethylene glycol) (PEG) or poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMA) shells with high loading efficiency (approximately 90%). In vitro cellular uptake experiments indicated that both SCNPs could be easily taken up by SKOV-3 ovarian cancer cells. Both cell proliferation assay and IC50 measurements indicated that cisplatin encapsulated in the SCNPs had much enhanced cytotoxicity to the cancer cells compared to free cisplatin. The positive charges on the PCL/PDMA SCNPs promoted the cellular internalization of the nanoparticles, resulting in higher cytotoxicity of cisplatin in these SCNPs. The IC50 of the cisplatin encapsulated in PCL/PDMA SCNPs was as low as 0.01 microg/mL, lower than that of cisplatin in PCL/PEG SCNPs and free cisplatin.  相似文献   
242.
243.
We describe a patterning technique that uses self-assembled monolayers and other surface chemistries for guiding the transfer of material from relief features on a stamp to a substrate. This purely additive contact printing technique is capable of nanometer resolution. Pattern transfer is fast and it occurs at ambient conditions. We illustrate the versatility of this method by printing single-layer metal patterns with feature sizes from a few tens of microns to a few tens of nanometers. We also demonstrate its use for patterning, in a single step, metal/dielectric/metal multilayers for functional thin film capacitors on plastic substrates.  相似文献   
244.
Ruthenium oxides (RuO(2)·1·10H(2)O and RuO(2)) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation state. Surface charging experiments indicate a large quantity of reactive functional groups for both materials and a decrease in the acidity of the surface functional groups with crystallization of the hydrous oxide. Dissolution studies conducted in acidic and basic pH environments indicate Ru-oxides are insoluble in 0.1 M HCl and slightly soluble in 0.1 M NaOH. Oxalate and ascorbate (5 mM) promoted dissolution of RuO(2)·1·10H(2)O demonstrated an increase in dissolution rates with decreasing pH and increasing ligand surface coverage. XPS analysis of the RuO(2)·1·10H(2)O surface after ligand promoted dissolution revealed the reduction of Ru(IV) to Ru(III) indicating that both ascorbate and oxalate reductively dissolve RuO(2)·1·10H(2)O. Dissolution experiments with RuO(2) resulted in dissolution only for 5 mM oxalate at pH 3. Dissolution rates calculated for RuO(2)·1·10H(2)O and RuO(2) are compared with previously published dissolution rates for iron oxides, demonstrating an order of magnitude decrease in the oxalate and ascorbate promoted dissolution.  相似文献   
245.
246.
The ground states of the M-NH(3) (M=Na,Al,Ga,In,Cu,Ag) complexes and their cations have been studied with density functional theory and coupled cluster [CCSD(T)] methods. The adiabatic ionization potentials (AIPs) of these complexes are calculated, and these are compared to results from high-resolution zero-electron kinetic energy photoelectron spectroscopy. By extrapolating the CCSD(T) energies to the complete basis set (CBS) limit and including the core-valence, scalar relativistic, spin-orbit, and zero-point corrections, the CCSD(T) method is shown to be able to predict the AIPs of these complexes to better than 6 meV or 0.15 kcal/mol. 27 exchange-correlation functionals, including one in the local density approximation, 13 in the generalized gradient approximation (GGA), and 13 with hybrid GGAs, were benchmarked in the calculations of the AIPs. The B1B95, mPW1PW91, B98, B97-1, PBE1PBE, O3LYP, TPSSh, and HCTH93 functionals give an average error of 0.1 eV for all the complexes studied, with the B98 functional alone yielding a maximum error of 0.1 eV. In addition, the calculated metal-ammonia harmonic stretching frequencies with the CCSD(T) method are in excellent agreement with their experimental values, whereas the B3LYP method tends to underestimate these stretching frequencies. The metal-ammonia binding energies were also calculated at the CCSD(T)/CBS level, and are in excellent agreement with the available experimental values considering the error limits, except for Ag-NH(3) and Ag(+)-NH(3), where the calculations predict stronger bond energies than measured by about 4 kcal/mol, just outside the experimental error bars of +/-3 kcal/mol.  相似文献   
247.
Electronic structure calculations at the coupled cluster (CCSD(T)) and density functional theory levels with relativistic effective core potentials and large basis sets were used to predict the isolated uranyl ion frequencies. The effects of anharmonicity and spin-orbit corrections on the harmonic frequencies were calculated. The anharmonic effects are larger than the spin-orbit corrections, but both are small. The anharmonic effects decreased all the frequencies, whereas the spin-orbit corrections increased the stretches and decreased the bend. Overall, these two corrections decreased the harmonic asymmetric stretch frequency by 6 cm-1, the symmetric stretch by 3 cm-1, and the bend by 3 cm-1. The best calculated values for UO22+ for the asymmetric stretch, symmetric stretch, and bend were 1113, 1032, and 174 cm-1, respectively. The separation between the asymmetric and the symmetric stretch band origins was predicted to be 81 cm-1, which is consistent with experimental trends for substituted uranyls in solution and in the solid state. The anharmonic vibrational frequencies of the isoelectronic ThO2 molecule also were calculated and compared to experiment to calibrate the UO22+ results.  相似文献   
248.
6-Fluoro-meta-tyrosine (1) was prepared from 2-fluoro-5-hydroxybenzaldehyde (6) based on an Erlenmeyer-Plöchl azlactone strategy. Products of expected metabolism of the amino acid, including 6-fluoro-meta-tyramine (2) and its O-sulfate conjugate (3), (2-fluoro-5-hydrxoyphenyl)acetic acid (4), and 6-fluoro-meta-octopamine (5) also were prepared from 1. The use of a recently reported ultrasound-catalyzed Henry reaction facilitated the preparation of the tyramine derivative 2. The compounds synthesized are available for high performance liquid chromatography (HPLC) standards in positron emission tomography (PET) studies employing 6-[18F]fluoro-meta-tyrosine and as reference samples for metabolic studies of the amino acid.  相似文献   
249.
250.
To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent methods, MM‐PBSA, MM‐GBSA, and QM/MM‐GBSA were carefully compared using 16 benzimidazole inhibitors in complex with Francisella tularensis FabI. The data suggests that the prediction results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM‐GBSA using 6 ns MD simulation trajectories together with GBneck2, PM3, and the mbondi2 radii set, generate the closest agreement with experimental values (r2 = 0.88). However, if the three implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called “multiple independent sampling”), the prediction results are relatively insensitive to all the tested parameters. Moreover, MM/GBSA together with GBHCT and mbondi, using 600 frames extracted evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental values (r2 = 0.84). Therefore, the multiple independent sampling method can be more efficient than a single, long simulation method. Since future scaffold expansions may significantly change the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which may affect the sensitivities of various parameters, the relatively insensitive “multiple independent sampling method” may avoid the need of an entirely new validation study. Moreover, due to large fluctuating entropy values, (QM/)MM‐P(G)BSA were limited to inhibitors’ relative affinity prediction, but not the absolute affinity. The developed protocol will support an ongoing benzimidazole lead optimization program. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号