首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23636篇
  免费   729篇
  国内免费   125篇
化学   15615篇
晶体学   243篇
力学   695篇
数学   2180篇
物理学   5757篇
  2023年   149篇
  2022年   416篇
  2021年   576篇
  2020年   428篇
  2019年   433篇
  2018年   382篇
  2017年   360篇
  2016年   675篇
  2015年   578篇
  2014年   817篇
  2013年   1393篇
  2012年   1699篇
  2011年   1905篇
  2010年   1206篇
  2009年   1047篇
  2008年   1606篇
  2007年   1388篇
  2006年   1431篇
  2005年   1207篇
  2004年   1071篇
  2003年   898篇
  2002年   848篇
  2001年   527篇
  2000年   473篇
  1999年   329篇
  1998年   210篇
  1997年   205篇
  1996年   270篇
  1995年   184篇
  1994年   197篇
  1993年   202篇
  1992年   151篇
  1991年   123篇
  1990年   125篇
  1989年   97篇
  1988年   68篇
  1987年   72篇
  1986年   50篇
  1985年   74篇
  1984年   50篇
  1983年   42篇
  1982年   63篇
  1981年   62篇
  1979年   46篇
  1978年   45篇
  1977年   34篇
  1976年   41篇
  1975年   37篇
  1974年   36篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
271.
Gate-modulated low-temperature Raman spectra reveal that the electric field effect (EFE), pervasive in contemporary electronics, has marked impacts on long-wavelength optical phonons of graphene. The EFE in this two-dimensional honeycomb lattice of carbon atoms creates large density modulations of carriers with linear dispersion (known as Dirac fermions). Our EFE Raman spectra display the interactions of lattice vibrations with these unusual carriers. The changes of phonon frequency and linewidth demonstrate optically the particle-hole symmetry about the charge-neutral Dirac point. The linear dependence of the phonon frequency on the EFE-modulated Fermi energy is explained as the electron-phonon coupling of massless Dirac fermions.  相似文献   
272.
The continuing need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted renewed interest in recent years for energy harvesting technologies capable of capturing energy from ambient vibrations. A particular focus has been placed on piezoelectric materials and devices due to the simplicity of the mechanical to electrical energy conversion and their high strain energy densities compared to electrostatic and electromagnetic equivalents. In this paper an arrangement of piezoelectric layers attached to a bistable asymmetric laminate is investigated experimentally to understand the dynamic response of the structure and power generation characteristics. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or “snap-through”, is used to repeatedly strain the surface bonded piezoelectric and generate electrical energy. This approach has been shown to exhibit high levels of power extraction over a wide range of vibrational frequencies. Using high speed digital image correlation, a variety of dynamic modes of oscillation are identified in the harvester. The sensitivity of such modes to changes in vibration frequency and amplitude are investigated. Power outputs are measured for repeatable snap-through events of the device and are correlated with the measured modes of oscillation. The typical power generated is approximately 3.2?mW, comparing well with the needs of typical wireless senor node applications.  相似文献   
273.
274.
Y2O3–H3BO3:Eu3+ powders were synthesized by the mechanical alloying (MA) method, and their structural and photoluminescent characteristics were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG/DTA), and luminescence spectrophotometer. The crystallite size of the powder mixture milling for 30 minutes (min) by the Willaimson–Hall method was approximately 58.8 nm with strain of 0.00141; overall, the internal strain increased with the milling time (tm). The morphology of the powder mixture with tm, as observed by SEM, divided into three different stages: agglomeration (0 < tm ≤ 30 min), disintegration (30min < tm ≤ 120 min), and homogenization (120min < tm ≤ 300 min). The transition temperature and the weight reduction rate of the sample powders were 645.58 °C and 2.851%, respectively. Furthermore, the photoluminescence of the powder mixture excited to 240 nm by a zenon discharge lamp (20 kW) was detected near 592 nm(5Do → 7F1), 613 nm, 628  (5Do → 7F2), and 650 nm (5Do → 7F3).  相似文献   
275.
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.  相似文献   
276.
We have fabricated lead-free Bi0.5(Na0.75K0.25)0.5TiO3 (BNKT) ceramics by a conventional process (CP) and reactive templated grain growth (RTGG) methods. The effect of grain orientation on structure, dielectric, complex impedance and electrical properties was investigated. The phase formation and grain morphology of BNKT ceramics were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. High dielectric constant and low dielectric loss was observed for grain oriented (textured) BNKT ceramics. Complex impedance, temperature dependent ac and dc conductivity were performed to explore the conduction behavior of the prepared BNKT ceramics.  相似文献   
277.
278.
Applied Magnetic Resonance - Total cerebral volume increases very rapidly in childhood, peaking in early teenage years then declining in adolescence. However, most studies quantified only one or...  相似文献   
279.
Journal of Visualization - Airfoils are mostly inefficient in their off-design conditions. In order to improve the aerodynamic performance of airfoils in these conditions, using an optimized cavity...  相似文献   
280.
Electrical properties of piezoelectric thick films with controlled microstructure were investigated. In order to enhance the electromechanical properties (e.g. d31, d33) of a thick film by control of its microstructure, a mixed powder, referred to as BNP, consisting of both nano-sized and micro-sized piezoelectric particles, was employed as a starting precursor in the film fabrication process. According to a scanning electron microscopy study, it is shown that a BNP thick film exhibits the densest homogeneous microstructures. According to surface area measurements, the BNP thick film was sufficiently densified without an additional infiltration process of Pb(Zr1-xTix)O3 sol for densification. The screen-printed BNP thick film possesses a dielectric constant and a remanent polarization much higher than those of a thick film composed of only micro-sized piezoelectric particles by a factor of more than two. This suggests the potential application of the BNP thick film, in conjunction with a silicon substrate, to a micromachined monolithic PZT thick film device on the silicon substrate. PACS 85.40.Xx; 85.85.+j; 85.50.-n; 77.65.-j; 68.37.-d  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号