首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   49篇
  国内免费   10篇
化学   729篇
晶体学   9篇
力学   34篇
数学   159篇
物理学   265篇
  2023年   6篇
  2022年   18篇
  2021年   39篇
  2020年   35篇
  2019年   14篇
  2018年   25篇
  2017年   23篇
  2016年   58篇
  2015年   39篇
  2014年   40篇
  2013年   85篇
  2012年   79篇
  2011年   79篇
  2010年   51篇
  2009年   44篇
  2008年   62篇
  2007年   46篇
  2006年   47篇
  2005年   37篇
  2004年   26篇
  2003年   23篇
  2002年   21篇
  2001年   13篇
  2000年   15篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1995年   10篇
  1994年   8篇
  1993年   17篇
  1992年   10篇
  1991年   8篇
  1990年   10篇
  1989年   10篇
  1988年   6篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1978年   17篇
  1977年   12篇
  1976年   8篇
  1973年   9篇
  1971年   6篇
  1969年   9篇
  1968年   9篇
  1967年   6篇
  1966年   5篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
71.
72.
Titanium-based metal composites (TMCs) are showing great potential to replace existing traditional materials in aerospace, automotive, and other high temperature engineering applications. This is due to their excellent mechanical, thermal, and physical properties and improved strength to weight ratio. Weight savings in the aerospace industry results in higher efficiency. Carbon nanotubes (CNTs), because of their low density and high Young's modulus, are considered to be an excellent reinforcement for metal matrix composites (MMCs). In the last 20 years extensive research has been carried out to investigate the combination of carbon nanotubes with aluminum, nickel, copper, magnesium, and other metal matrices. The production techniques such as mechanical alloying through powder metallurgy routes and their effects on the mechanical properties of CNT reinforced TMCs are reviewed in this article. The role of the volume fraction of carbon nanotubes and their dispersion into the metal matrix are highlighted. Governing equations to predict the mechanical and tribological properties of CNT reinforced titanium matrix composites are deduced. With the help of this initial prediction of properties, the optimal processing parameters can be optimized. Successful development of CNT reinforced TMCs would result in better wear and mechanical behavior and enhance their ability to withstand high temperature and structural loading environments.  相似文献   
73.
We have performed molecular dynamics calculations using a revised version of the Gromos56Acarbo force field to understand the consequences of the different potential hydrogen bonding patterns on the structural stability and thermal behavior of the Iα and Iβ forms of native cellulose. For each allomorph, we considered three patterns of hydrogen bonds: two patterns obtained from neutron diffraction data refinement and a regular mixture of the two. Upon annealing, the hydrogen bonding schemes of cellulose Iβ, irrespective of the starting structure, re-arranged into the main hydrogen bond pattern experimentally observed (pattern A). On the other hand, the Iα structures, irrespective of the starting hydrogen bonding pattern, converged to a non-experimental structure where the adjacent chains are shifted along the chain direction by 0.12 nm in the hydrogen-bonded plane, and the hydroxymethyl group conformation alternates between gt and tg along the chain. The exotic structure in Iα might be a consequence of a deficiency in force field parameters and/or potential molecular arrangement in less crystalline cellulose.  相似文献   
74.
Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The “all‐in‐one” 1,4‐conjugate arylation and C? N cross‐coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks.  相似文献   
75.
Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.  相似文献   
76.
Research on Chemical Intermediates - Palladium nanoparticles (~?1–3 nm, 0.4 wt% Pd) were uniformly distributed over the surface of fibrous silica nanospheres (KCC-1)...  相似文献   
77.
Global efforts for engineering desired materials which are able to treat the water sources still are ongoing in the bench level methods. Considering adsorbent and photocatalytic materials as the main reliable candidates still are encountering with struggles because of many challenges that restrict their large-scale application. This review comprehensively considered the recent advanced materials water treatment methods which involve to magnetic, activated carbon, carbon nanotubes (CNTs), graphene (G), graphene oxide (GO), (Graphene) quantum dots, carbon nanorods, carbon nano-onions, and reduced graphene oxide (RGO), zeolite, silica and clay-based nanomaterials. The adsorption and photocatalytic properties of these nanomaterials introduced them as highly potent option for heavy metal ions and organic dyes removal and photocatalytic degradation. High specific surface area in conjugation with presenting higher kinetics of adsorption and decomposition are the main characteristics of these materials which make them appropriate to treat wastewater even in ultralow concentration of the pollutants. Considering the mechanistic aspects of the adsorption and photocatalytic decomposition process, challenges and opportunities were other subjects that have been highlighted for the discussed nanomaterials. In term of the adsorption approaches, the mechanism of adsorptions and their influence on the maximum adsorption capacity were discussed and also for photocatalyst approach the radical active spices and their role in kinetic and efficiency of the organic pollutant decomposition were provided a deep discussion.  相似文献   
78.
Heavy metals intoxication causes several health problems that necessitate finding new protective and therapeutic approaches. This study aimed to evaluate the impact of Musa sp. leaves extract (MLE) on hepato-renal toxicities induced by cadmium (Cd) in male mice. The phytochemical screening, metal chelating activity (MCA), and the median lethal dose (LD50) of MLE were determined. Fifty CD-1 male mice were used and intraperitoneally (i.p.) injected with MLE (1000 to 5000 mg/kg b.wt) for MLE LD50 determination. Another 50 mice were used for evaluating the effect of MLE on Cd toxicity. Blood samples were collected for hematological, liver, and kidney functions assessments. Liver tissue homogenates were used for determination of oxidant/antioxidant parameters. Liver and kidney tissues were harvested for histopathological and molecular investigations. MLE showed potent in vitro antioxidant activities. The MCA and LD50 of the MLE were 75 µg/mL and 3000 mg/kg b.wt, respectively. MLE showed beneficial therapeutic activity against hepato-renal toxicities in Cd-intoxicated mice, evidenced by improving the hematological, biochemical, histopathological, and molecular alterations.  相似文献   
79.
A multi-objective scheme for structural topology optimization of distributed compliant mechanisms of micro-actuators in MEMS condition is presented in this work, in which mechanical flexibility and structural stiffness are both considered as objective functions. The compliant micro-mechanism developed in this way can not only provide sufficient output work but also have sufficient rigidity to resist reaction forces and maintain its shape when holding the work-piece. A density filtering approach is also proposed to eliminate numerical instabilities such as checkerboards, mesh-dependency and one-node connected hinges occurring in resulting mechanisms. SIMP is used as the interpolation scheme to indicate the dependence of material modulus on element-regularized densities. The sequential convex programming method, such as the method of moving asymptotes (MMA), is used to solve the optimization problem. The validation of the presented methodologies is demonstrated by a typical numerical example.  相似文献   
80.
The intrinsic liquid interface of Na-K alloy allays concerns about dendrite growth on metal anodes that are thermodynamically within the room temperature(20-22℃).Nevertheless,it hinders the formation of a stable electrode structure due to the inferior wettability induced by considerable liquid tension.In addition,the dominant ionic carrier in the Na-K alloy is subject to multiple factors,which is not conducive to customized battery design.This review,based on recently reported frontier achievements on Na-K liquid anodes,summarizes practical strategies for promoting the wettability by hightemperature induction,capillary effect,vacuum infiltration,and solid interface protection.Furthermo re,four selection mechanisms of the dominant ionic carrier are presented:(1) ion property dominated,(2)cathode dominated,(3) separator dominated,and(4) solid electrolyte interface dominated.Notably,initial electrolytes in energy storage systems have been unable to play a decisive role in ionic selection.Utilizing a superior wettability strategy and simultaneously identifying the dominant ionic carrier can facilitate the tailored application of dendrite-free Na-K liquid anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号