首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1733篇
  免费   88篇
  国内免费   26篇
化学   1176篇
晶体学   15篇
力学   83篇
数学   148篇
物理学   425篇
  2024年   7篇
  2023年   19篇
  2022年   109篇
  2021年   83篇
  2020年   75篇
  2019年   65篇
  2018年   80篇
  2017年   80篇
  2016年   85篇
  2015年   62篇
  2014年   88篇
  2013年   165篇
  2012年   136篇
  2011年   125篇
  2010年   60篇
  2009年   65篇
  2008年   67篇
  2007年   64篇
  2006年   54篇
  2005年   49篇
  2004年   45篇
  2003年   39篇
  2002年   39篇
  2001年   19篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   13篇
  1995年   14篇
  1994年   11篇
  1993年   8篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1983年   7篇
  1982年   6篇
  1981年   8篇
  1980年   3篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1847条查询结果,搜索用时 15 毫秒
81.

We have synthesized two mononuclear complexes, Mn-hq and Co-hq, to serve as sustainable catalysts (for degrading dyes from organic pollutant) and as biocatalysts (for promoting oxidation of catechol to quinone). The two complexes have been characterized by various spectroscopic tools, and with the assistance of single-crystal X-ray diffraction data, their molecular structures were established. The present complexes were exploited for the catalytic activity, i.e., enzymatic activity and photocatalytic property. In methanolic solution, Mn-hq and Co-hq were examined for catecholase-like activity and Mn-hq particularly catalyzes the oxidation of 3,5-di-tert-butyl catechol to analogous quinone with a Kcat value of 835.2 h?1. Additionally, Mn-hq and Co-hq demonstrated remarkable photocatalytic activity for the degradation of methylene blue (MB) in the aqueous medium beneath visible light. Co-hq shows excellent stability and recyclability toward MB. Further, trapping experiment along with degradation pathways is also explored. Thus, the present research throws light on the excellent catalytic properties of simply designed complexes and this activity can be tuned for desired efficiencies in future prospects.

  相似文献   
82.
Grignard reactions are of importance in organic chemistry for the synthesis β-keto esters and diethyl malonate, alcohols, aldehydes or ketones, monocarboxylic acids, and other organometallic compounds. Generally, the heterolytic dissociation of C─Mg bond in Grignard reagent is the key step in these reactions. Recently, homolytic cleavage of the C─Mg bond in Grignard reagents has been reported in the preparation of stable radicals. These reactive species react with other compounds, which result in the formation of hydrocarbons and their derivatives. Therefore, the study of homolytic cleavage of C─Mg bonds is quite vital to better understand the kinetics and thermodynamics of these reactions. In the current study, a benchmark approach is adopted to find a cost-effective and accurate density functional (DF) for bond dissociation energies measurement of the C─Mg bond of Grignard reagents. Twenty-nine DFs from 13 density functional theory (DFT) classes with three types of basis sets (Pople' 6-31G(d) and 6-311G(d), Dunning's aug-cc-pVDZ, and Karlsruhe' def2-SVP basis sets) are implemented for the measurement of dissociation energies of the C─Mg bond. Theoretical dissociation energy values are compared with experimental reported values of the C─Mg bond of selected Grignard reagents. TPSSTPSS of the meta-GGA class with 6-31G (d) basis set gave accurate results, and its Pearson's correlation is 0.95. SD, root mean square deviation, and mean unsigned error of this method are 2.36 kcal mol−1, 2.33 kcal mol−1, and −0.46 kcal mol−1, respectively. TPSSTPSS of the meta-GGA class is a one-electron, self-interaction, error-free Tao-Perdew-Staroverov-Scuseria functional that performed better with the 6-31G(d) basis set.  相似文献   
83.
An electrochemical sensor based on the conducting polymer composite with a palladium complex (Pd(C2H4N2S2)2) was developed for the detection of serotonin and dopamine simultaneously in the breast cancer cell and human plasma samples. The proposed sensor was fabricated using the Pd(C2H4N2S2)2 complex‐anchored poly2,2 : 5,2‐terthiophene‐3‐(p‐benzoic acid) (pTBA) layer on the AuNPs decorated reduced graphene oxide (AuNPs@rGO) substrate, which revealed the enhanced anodic current of the target species. The sensor probe was characterized by electrochemical and surface analysis methods. The experimental parameters affecting the sensor performance were optimized, in terms of AuNPs@rGO concentration, the number of electropolymerization cycle for pTBA, immobilization time of Pd(C2H4N2S2)2, and pH. The dynamic ranges for serotonin and dopamine were obtained from 0.02 to 200 μM, and from 0.1 to 200 μM with the detection limit of 2.5, and 24.0 nM, respectively. The reliability of proposed sensor was evaluated using cancer cell lines for the clinical applications.  相似文献   
84.
Dental caries, a global oral health concern, is a biofilm-mediated disease. Streptococcus mutans, the most prevalent oral microbiota, produces extracellular enzymes, including glycosyltransferases responsible for sucrose polymerization. In bacterial communities, the biofilm matrix confers resistance to host immune responses and antibiotics. Thus, in cases of chronic dental caries, inhibiting bacterial biofilm assembly should prevent demineralization of tooth enamel, thereby preventing tooth decay. A high throughput screening was performed in the present study to identify small molecule inhibitors of S. mutans glycosyltransferases. Multiple pharmacophore models were developed, validated with multiple datasets, and used for virtual screening against large chemical databases. Over 3000 drug-like hits were obtained that were analyzed to explore their binding mode. Finally, six compounds that showed good binding affinities were further analyzed for ADME (absorption, distribution, metabolism, and excretion) properties. The obtained in silico hits were evaluated for in vitro biofilm formation. The compounds displayed excellent antibiofilm activities with minimum inhibitory concentration (MIC) values of 15.26–250 µg/mL.  相似文献   
85.
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.  相似文献   
86.
Seaweeds can play a vital role in plant growth promotion. Two concentrations (5 and 10 mg/mL) of soluble polysaccharides extracted from the green macroalgae Ulva fasciata and Ulva lactuca were tested on Zea mays L. The carbohydrate and protein contents, and antioxidant activities (phenols, ascorbic, peroxidase, and catalase) were measured, as well as the protein banding patterns. The soluble polysaccharides at 5 mg/mL had the greatest effect on the base of all of the parameters. The highest effects of soluble polysaccharides on the Zea mays were 38.453, 96.76, 4, 835, 1.658, 7.462, and 38615.19, mg/mL for carbohydrates, proteins, phenol, µg ascorbic/mL, mg peroxidase/g dry tissue, and units/g tissue of catalase, respectively. The total number of protein bands (as determined by SDS PAGE) was not changed, but the density of the bands was correlated to the treatments. The highest band density and promoting effect were correlated to 5 mg/mL soluble polysaccharide treatments extracted from Ulva fasciata in Zea mays, which can be used as a biofertilizer.  相似文献   
87.
Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (−36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer–Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.  相似文献   
88.
89.
An attempt has been made to develop and validate a simultaneous HPLC method for novel approach of drug release via oil‐in‐water (o/w) nanoemulsion formulation and Habb‐e‐Khardal Unani tablet containing piperine and guggul sterones E and Z as main ingredients. Nanoemulsion was prepared by titration method using sefsol‐218 as an oily phase, cremophor‐EL as a surfactant, transcutol as a co‐surfactant and distilled water as an aqueous phase. The formulation was optimized on the basis of thermodynamic stability and dispersibilty test. The nanoformulation was evaluated for particle size, surface morphology, electrical conductivity and viscosity determination. The in vitro dissolution was carried out by dialysis bag method. Drugs were quantified using an HPLC method developed in‐house with a C18 column as stationary phase and acetonitrile and water as mobile phase at λmax of 240 nm. The optimized formulation showed higher drug release, lower droplet size and less viscosity as compared with the conventional Habb‐e‐Khardal Unani tablet. The present study illustrated the potential of nanoemulsion dosage form in improving biopharmaceutic performance of piperine and guggul sterone. The HPLC method was also found to be quite sufficient for the routine quality control of formulations containing piperine and guggul sterone E and Z as ingredients and also for in vitro drug release studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
90.
Transport in Porous Media - This work investigates the interplay of gas transport in the microcracks and matrix of shale using He and $$\hbox {CO}_2$$ via transient upstream pressure-pulse-decay...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号