首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   80篇
  国内免费   24篇
化学   1098篇
晶体学   15篇
力学   75篇
数学   146篇
物理学   365篇
  2024年   6篇
  2023年   18篇
  2022年   101篇
  2021年   75篇
  2020年   72篇
  2019年   59篇
  2018年   73篇
  2017年   77篇
  2016年   77篇
  2015年   58篇
  2014年   78篇
  2013年   150篇
  2012年   133篇
  2011年   118篇
  2010年   56篇
  2009年   61篇
  2008年   65篇
  2007年   59篇
  2006年   50篇
  2005年   44篇
  2004年   44篇
  2003年   39篇
  2002年   37篇
  2001年   17篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   10篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1699条查询结果,搜索用时 15 毫秒
91.
This study with sampling expeditions of marine sediment, seawater and biota were performed at 30 stations within Malaysian Exclusive Economic Zone (EEZ). A total of >400 samples were collected to determine the activity concentration of anthropogenic radionuclides (239+240Pu, 137Cs) and their activity ratio (239+240Pu/137Cs) in sediments, seawater and biota. The purpose of this study was to determine the concentration levels for these radionuclides and to evaluate any occurrence of radioactive contamination. Sediment cores were obtained using multicorer device, while water samples via co-precipitation techniques and biota was purchased from local fishermen. The activity concentrations of 239+240Pu in sediment, seawater and biota were ranged 0.21–0.45 Bq/kg dry wt., 2.33–7.95 mBq/m3 and <0.008 Bq/kg fresh wt., respectively. Meanwhile, the values of 137Cs were ranged <1.00–2.71 Bq/kg dry wt. in sediment, 3.40–5.89 Bq/m3 in seawater and <0.05–0.41 Bq/kg fresh wt. in biota, respectively. Activity ratios of 239+240Pu to 137Cs obtained seem to confirm that these artificial radioactivities were mainly due to global nuclear fallout.  相似文献   
92.
Antimony(III) complexes of thioamides [thioamides=thiourea (Tu), N,N′‐dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), imidazolidine‐2‐thione (Imt) and diazinane‐2‐thione (Diaz)] with the general formulae, Sb(thione)nCl3 (n=1, 2, 2.5, 3) were prepared and characterized by elemental analysis, IR and NMR (1H, 13C) spectroscopic methods. The spectral data of the complexes are consistent with the coordination of the thiones to antimony(III). The crystal structure of one of them, {[Sb(Imt)2Cl2]2(μ2‐Imt)}Cl2 ( 1 ), was determined by X‐ray crystallography, which shows that the complex is dinuclear consisting of two [Sb(Imt)2Cl2] units bridged by an Imt molecule. In 1 , the antimony atom is bonded to two chlorine atoms, two sulfur atoms of coordinated Imt molecules and one sulfur atom of a bridging Imt molecule. The antimony environment can be considered to be distorted octahedral with one Cl? ion weakly bound to antimony.  相似文献   
93.
Hydrogels, having nanomaterials (e.g. nanoparticles and nanorods) incorporated inside their polymeric meshes, are generally called hybrid gels/hydrogels. These assemblies combine the properties of both hydrogels and nanomaterials in one system. These responsive hybrid hydrogels, particularly polymerized N-isopropylacrylamide (PoNip) polymeric gels, have been extensively exploited for various multi-disciplinary applications in the literature over the past two decades because of their unique and exquisite particulars. Next generation assemblies have been prepared by using the smart nature of these gels toward the general incentives (e.g. temperature, ionic strength, and pH) in the fields of nanocatalysis, water purification, drug delivery, photonics, and optics. This review presents an overview of the PoNip hybrid assemblies engineered over the past 7 years i.e. 2010–2016 and extensively discusses the interaction of the incorporated nanomaterial with the polymeric chains of the hydrogels as it is the most significant factor which makes these assemblies attractive for all the associated applications. Moreover, this article also describes the preparative routes, properties, classification, and applications of these hybrid hydrogels in the fields of medicine, environment, catalysis, and nanotechnology.  相似文献   
94.
The protolytic equilibria of piperazine (C4H10N2) and phosphate have been investigated in the presence of cobalt or nickel chloride or nitrate by potentiometric titrations between pH 2 and 8. Potentiometric titrations suggest the presence of [M2+(H2O)5(C4H11N2+)]3+ and [M2+(H2O)5(C4H10N2)]2+ in solution with stability constants logK of 3.1 and 3.8 for M = Co and 3.1 and 3.6 for M = Ni, respectively. Crystallization experiments were then conducted at selected pH values to isolate desired species from the known solution composition. Crystallization afforded [M(H2O)6]2+(C4H12N22+)(HPO42—)2 at pH 3.5 and 6.2 (M = Co, Ni), and Co3(PO4)2·8H2O at pH 10.5. No crystals with the dihydrogenphosphate anion or a metal‐bound piperazine ligand could be isolated under the reaction conditions. The solid‐state assembly in the isomorphous structures of [M(H2O)6](C4H12N2)(HPO4)2 with M = Co and Ni is based on an extended hydrogen bonded network between the three ionic building blocks.  相似文献   
95.
Crystalline phases of Ti(IV) tungstosilicate and Ti(IV) tungstophosphate have been synthesised. The ion-exchange capacities of Ti(IV) tungstosilicate and Ti(IV) tungstophosphate have been reported as 0.44 and 0.80 mequiv./g, respectively. Both materials show monofunctional ion-exchange characteristic and are stable in 0.1 M solutions of HNO3, HCl, H2SO4 and acetone and benzene. Ti(IV) tungstosilicate is found to be more stable thermally than Ti(IV) tungstophosphate (loss in ion-exchange capacity was found as 58 and 80%, respectively for samples heated at 200 degrees C). The Kd values for heavy metals such as Pb, Hg, Cd, Sb, Co, Zn, Ni, Fe, Cr etc. have been reported in demineralised water and two surfactant media by batch processes. Cr3+, Fe3+ and Sn4+ are totally adsorbed on both the materials in demineralised water while a decrease in Kd value with increase in concentration of two surfactants is reported. On the basis of Kd values for metal ions, thirteen binary separations and five ternary separations on Ti(IV) tungstosilicate and thirteen different binary separations and four different ternary separations on Ti(IV) tungstophosphate have been achieved. Separation of methylamine from ethylamine has been done by GC on a column packed with Ti(IV) tungstophosphate.  相似文献   
96.
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.  相似文献   
97.
Foam, as a non-Newtonian fluid, plays an important role in the underbalanced drilling technique in oil field development. The rheological properties of drilling fluids, such as foam, have a direct effect on flow characteristics and hydraulic performance. Two rheological models—the Herschel–Bulkley model and power law—were fitted to two foam systems in this study. Computational fluid dynamics (CFD) was used to simulate the effect of the rheological models on solid–liquid (cuttings transport) hydraulics in concentric and eccentric annulus during the foam drilling operation. The simulation results are compared to the experimental data from previous studies. The results of CFD using the power law model are in good agreement with experimental results in horizontal annulus with respect to the Herschel–Bulkley model with relative error less than 8%. Thus, for CFD cuttings transport for simulations in inclined and horizontal annulus, it is best to use the power law's rheological model parameters.  相似文献   
98.
Six new aza crown ethers (4–9) were synthesized based on the conventional route crab‐like method with the reaction of corresponding bis‐α‐chloroacetamidediphenylsulfide (BCADPS) (3) and aliphathic diamines (a–e) in refluxing acetonitrile in good yields. BCADPS (3) was synthesized with the reaction of 2,2′‐diaminodiphenyl sulfide (2) and chloroacetyl chloride. Interestingly, only the macrocyclization of BCADPS (3) with diamine (e) was led to the cryptand (9) in which methylene hydrogens were found as diastereotopic nucleis which is attributed to the rigidity of the cryptand ( 9 ). The formation of this cryptand ( 9 ) may be related the template effect of potassium ion. The structures of all compounds were confirmed using IR, 1H‐NMR, 13C‐NMR, mass spectroscopies, and elemental analysis.  相似文献   
99.
The present investigation was conducted to evaluate salt tolerance in ten genotypes of soybean (Glycine max L.). Twelve-day-old seedlings, grown hydroponically, were treated with 0, 25, 50, 75, 100, 125 and 150?mM NaCl for 10?days. Growth, lipid peroxidation and antioxidant enzyme activities were evaluated. Growth, measured in terms of length, fresh weight and dry weight of plants, was drastically reduced in Pusa-24 while there was little effect of NaCl treatment on Pusa-37 genotype of soybean. High level of lipid peroxidation was observed in Pusa-24 as indicated by increased level of malondialdehyde. Activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were maximum in Pusa-37 where 9-, 1-, 5- and 6-fold increase over control were observed, respectively. The results suggested that Pusa-24 and Pusa-37 are salt-sensitive and salt-tolerant genotype of soybean, respectively, and antioxidant defence system is involved in conferring the sensitiveness and tolerance in these genotypes. Salt-tolerant genotype Pusa-37, was further analysed by 2-dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the present study, 173 protein spots were identified. Of these, 40 proteins were responsive to salinity in that they were either up- or downregulated. This study could help us in identifying the possible regulatory switches (gene/s) controlling novel proteins of the salt-tolerant genotype of the crop plants and their possible role in defence mechanism.  相似文献   
100.
A three‐dimensional (3D) cage‐like organic network (3D‐CON) structure synthesized by the straightforward condensation of building blocks designed with gas adsorption properties is presented. The 3D‐CON can be prepared using an easy but powerful route, which is essential for commercial scale‐up. The resulting fused aromatic 3D‐CON exhibited a high Brunauer–Emmett–Teller (BET) specific surface area of up to 2247 m2 g?1. More importantly, the 3D‐CON displayed outstanding low pressure hydrogen (H2, 2.64 wt %, 1.0 bar and 77 K), methane (CH4, 2.4 wt %, 1.0 bar and 273 K), and carbon dioxide (CO2, 26.7 wt %, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol?1; CH4, 18.72 kJ mol?1; CO2, 31.87 kJ mol?1). These values are among the best reported for organic networks with high thermal stability (ca. 600 °C).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号