首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   8篇
化学   201篇
晶体学   2篇
力学   14篇
数学   67篇
物理学   53篇
  2023年   3篇
  2021年   3篇
  2020年   5篇
  2019年   11篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   15篇
  2012年   20篇
  2011年   14篇
  2010年   7篇
  2009年   3篇
  2008年   19篇
  2007年   11篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   10篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1997年   12篇
  1996年   4篇
  1995年   6篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1985年   4篇
  1984年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1975年   2篇
  1974年   5篇
  1972年   2篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1960年   2篇
  1937年   2篇
  1935年   2篇
  1932年   2篇
  1927年   3篇
  1926年   2篇
  1918年   2篇
  1915年   2篇
排序方式: 共有337条查询结果,搜索用时 46 毫秒
331.
A microscale chemistry improvement engine: a pre-dosed microscale high-throughput experimentation additives platform enables rapid, serendipitous reaction improvement. This platform allowed one chemist to set up 475 experiments and analyze the results using MISER chromatography in a single day, thus resulting in two high-quality catalytic systems for the construction of the title compound 1. Support for a single-electron transfer mechanism was obtained.  相似文献   
332.
We present a comparison of the following prominent propylene epoxidation mechanisms using H2O2/TS-1 at a consistent density functional theory (DFT) method: (1) the Sinclair and Catlow mechanism on tripodal site through Ti-OOH species, (2) the Vayssilov and van Santen mechanism on tetrapodal site without Ti-OOH formation, (3) the Munakata et al. mechanism involving peroxy (Ti-O-O-Si) species, (4) the defect site mechanism with a partial silanol nest, and (5) the defect site mechanism with a full silanol nest. We have reproduced the previously published (ethylene epoxidation) pathways (1-3) for propylene epoxidation using larger and SiH3-terminated cluster models of the T-6 crystallographic site of TS-1. Mechanism 5 is a new mechanism reported here for the first time. The use of a consistent level of theory for all the pathways allows for the first time a meaningful comparison of the energetics representing the aforementioned pathways. We have rigorously identified the important reaction intermediates and transition states and carried out a detailed thermochemical analysis at 298.15 K and 1 atm. On the basis of the Gibbs free energy of activation, the Sinclair and Catlow mechanism (Delta G(act) = 7.9 kcal/mol) is the energetically most favorable mechanism, which is, however, likely to operate on the external surface of TS-1 due to the tripodal nature of the Ti site in their model. The newly reported defect site mechanism (with a full silanol nest) is a competitive propylene epoxidation mechanism. There are two main steps: (1) hydroperoxy formation (Delta G(act) = 8.9 kcal/mol) and (2) propylene epoxidation (Delta G(act) = 4.6 kcal/mol). This mechanism is likely to represent the chemistry occurring inside the TS-1 pores in the liquid-phase epoxidation (H2O2/TS-1) process and could operate in direct gas-phase epoxidation (H2/O2/Au/TS-1) as well. If only the propylene epoxidation step is considered, then the Munakata peroxo intermediate (Si-O-O-Ti) is the most reactive intermediate, which can epoxidize propylene with a negligible activation barrier. However, formation of the Munakata intermediate is a very activated step (Delta G(act) = 19.8 kcal/mol). We also explain the trends in the activation barriers in different mechanisms using geometric and electronic features such as orientation of adsorbed H2O2 and propylene, hydrogen bonding, O1-Ti bond distance in the Ti-O1-O2-H intermediate, and O1-O2 stretching in the transition state. Implications of different Ti site models are also discussed in light of the nature of external/internal and nondefect/defect sites of TS-1.  相似文献   
333.
We used a hybrid quantum-mechanics/molecular-mechanics (QM/MM) approach to simulate the adsorption of Au(n)() (n = 1-5), AuPd, and Au(2)Pd(2) clusters inside the TS-1 and S-1 pores. We studied nondefect and metal-vacancy defect sites in TS-1 and S-1 for a total of four different environments around the T6 crystallographic site. We predict stronger binding of all clusters near Ti sites in Ti-substituted framework compared to adsorption near Si sites-consistent with the experimental finding of a direct correlation between the Ti-loading and the Au-loading on the Au/TS-1 catalysts with high Si/Ti ratio. The cluster binding is also stronger near lattice-metal vacancies compared to fully coordinated, nondefect sites. In all the cases, a trend of binding energy (BE) versus Au cluster size (n) shows a peak at around n = 3-4. Our results show that there is enough room for the attack of H(2)O(2) on the Ti-defect site even with Au(1-4) adsorbed-a result that supports the possibility of H(2)O(2) spillover from the Au clusters to the adjacent Ti-defect sites. Mulliken charge analysis indicates that in all the cases there is electron density transfer to adsorbed clusters from the zeolite lattice. In the case of both gas-phase and adsorbed Au-Pd clusters, all the Pd atoms were positively charged, and all the Au atoms were negatively charged due to the higher electron-affinity of Au. We also found a correlation between the BE and the charge transfer to the clusters (the higher the charge transfer to the clusters, the higher the BE), and a universal correlation was found for Au(2-5) when BE and charge transfer were plotted on a per atom basis. A relatively larger charge transfer to the adsorbed clusters was found for the Ti sites versus the Si sites, and for the defect sites versus the nondefect sites. The trends in the BE were corroborated using Gibbs free energy of adsorption (DeltaG(ads)), and the implications of DeltaG(ads) in sintering of Au clusters are also discussed. Our results confirm that electronic factors such as cluster-charging are potentially important support effects for the Au/TS-1 catalyst.  相似文献   
334.
We report a B3LYP study of a novel mechanism for propylene epoxidation using H(2) and O(2) on a neutral Au(3) cluster, including full thermodynamics and pre-exponential factors. A side-on O(2) adsorption on Au(3) is followed by dissociative addition of H(2) across one of the Au-O bonds (DeltaE(act) = 2.2 kcal/mol), forming a hydroperoxy intermediate (OOH) and a lone H atom situated on the Au(3) cluster. The more electrophilic O atom (proximal to the Au) of the Au-OOH group attacks the C=C of an approaching propylene to form propylene oxide (PO) with an activation barrier of 19.6 kcal/mol. We predict the PO desorption energy from the Au(3) cluster with residual OH and H to be 11.5 kcal/mol. The catalytic cycle can be closed in two different ways. In the first subpathway, OH and H, hosted by the same terminal Au atom, combine to form water (DeltaE(act) = 26.5 kcal/mol). We attribute rather a high activation barrier of this step to the breaking of the partial bond between the H atom and the central Au atom in the transition state. Upon water desorption (DeltaE(des) = 9.9 kcal/mol), the Au(3) is regenerated (closure). In the second subpathway, H(2) is added across the Au-OH bond to form water and another Au-H bond (DeltaE(act) = 22.6 kcal/mol). Water spontaneously desorbs to form an obtuse angle Au(3) dihydride, with one H atom on the terminal Au atom and the other bridging the same terminal Au atom and the central Au atom. A slightly activated rearrangement to a symmetric triangular Au(3) intermediate with two equivalent Au-H bonds, addition of O(2) into the Au-H bond, and rotation reforms the hydroperoxy intermediate in the main cycle. On the basis of the DeltaG(act), which contains contribution from both pre-exponetial factor and activation energy, we identify the propylene epoxidation step as the actual rate-determining step (RDS) in both the pathways. The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored.  相似文献   
335.
We performed density-functional theory analysis of nondissociative CO adsorption on 22 binary Au-alloy (Au(n)M(m)) clusters: n=0-3, m=0-3, and m+n=2 (dimers) or 3 (trimers), M=Cu/Ag/Pd/Pt. We report basis-set superposition error corrections to adsorption energies and include both internal energy of adsorption (DeltaU(ads)) and Gibbs free energy of adsorption (DeltaG(ads)) at standard conditions (298.15 K and 1 atm). We found onefold (atop) CO binding on all the clusters except Pd2 (twofold/bridged), Pt2 (twofold/bridged), and Pd3 (threefold). In agreement with the experimental results, we found that CO adsorption is thermodynamically favorable on pure Au/Cu clusters but not on pure Ag clusters and also observed the following adsorption affinity trend: Pd>Pt>Au>Cu>Ag. For alloy dimers we found the following patterns: Au2>M Au>M2 (M=Ag/Cu) and M2>M Au>Au2 (M=Pd/Pt). Alloying Ag/Cu dimers with (more reactive) Au enhanced adsorption and the opposite effect was observed for PdPt dimers. The Ag-Au, Cu-Au, and Pd-Au trimers followed the trends observed on dimers: Au3>M Au2>M2Au>M3 (M=Ag/Cu) and Pd3>Pd2Au>PdAu2>Au3. Interestingly, Pt-Au trimers reacted differently and alloying with Au systematically increased the adsorption affinity: PtAu2>Pt2Au>Pt3>Au3. A strikingly different behavior of Pt is also manifested by the triplet spin state and onefold (atop) binding in Pt3-CO which is in contradiction with the singlet spin state and threefold binding in Pd3-CO. We found a linear correlation between CO binding energy (BE) and elongation of the CO bond. For Ag-Au and Cu-Au clusters, the increase in CO BE (and elongation of the C-O bond which is probably due to the back donation) is accompanied by the decrease in the cluster-CO distance suggesting that the donation (from 5sigma highest occupied molecular orbital in CO to cluster lowest unoccupied molecular orbital) mechanism also contributes to the BE. For Pd-Au clusters, the cluster-CO distance (and CO bond length) increases with increase in the BE, suggesting that the donation mechanism may not be important for those clusters. No clear trend was observed for Pt-Au clusters.  相似文献   
336.
Most of the current search techniques represent approaches that are largely adapted for specific search problems. There are many real-world scenarios where the development of such bespoke systems is entirely appropriate. However, there are other situations where it would be beneficial to have methodologies which are generally applicable to more problems. One of our motivating goals for investigating hyper-heuristic methodologies is to provide a more general search framework that can be easily and automatically employed on a broader range of problems than is currently possible. In this paper, we investigate a simulated annealing hyper-heuristic methodology which operates on a search space of heuristics and which employs a stochastic heuristic selection strategy and a short-term memory. The generality and performance of the proposed algorithm is demonstrated over a large number of benchmark datasets drawn from two very different and difficult problems, namely; course timetabling and bin packing. The contribution of this paper is to present a method which can be readily (and automatically) applied to different problems whilst still being able to produce results on benchmark problems which are competitive with bespoke human designed tailor made algorithms for those problems.  相似文献   
337.
YM-254890 and FR900359 are potent and selective inhibitors of the Gq/11-signaling pathway. As such, they have been attractive targets for both synthesis and biological studies. Yet in spite of this effort, a versatile synthetic approach to the molecules that allows for the rapid construction of a variety of non-natural and labelled analogs and an increase in the amount of those analogs available remains elusive. We report here a convergent building block approach to the molecules that can solve this challenge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号