首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2013篇
  免费   107篇
  国内免费   15篇
化学   1565篇
晶体学   11篇
力学   31篇
综合类   16篇
数学   220篇
物理学   292篇
  2023年   18篇
  2022年   11篇
  2021年   36篇
  2020年   43篇
  2019年   52篇
  2018年   36篇
  2017年   25篇
  2016年   54篇
  2015年   50篇
  2014年   54篇
  2013年   113篇
  2012年   146篇
  2011年   145篇
  2010年   74篇
  2009年   91篇
  2008年   155篇
  2007年   132篇
  2006年   125篇
  2005年   132篇
  2004年   112篇
  2003年   82篇
  2002年   91篇
  2001年   22篇
  2000年   28篇
  1999年   21篇
  1998年   23篇
  1997年   21篇
  1996年   22篇
  1995年   11篇
  1994年   14篇
  1993年   9篇
  1992年   7篇
  1991年   4篇
  1990年   17篇
  1989年   9篇
  1988年   9篇
  1987年   10篇
  1986年   4篇
  1985年   18篇
  1984年   12篇
  1983年   13篇
  1982年   14篇
  1981年   15篇
  1980年   14篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
排序方式: 共有2135条查询结果,搜索用时 109 毫秒
61.
62.
Addition reaction of two geometrical isomers of 1-chlorovinyl p-tolyl sulfoxides, derived from unsymmetrical ketones and chloromethyl p-tolyl sulfoxide, with lithium enolate of tert-butyl acetate gave single isomers of the adduct, respectively. Treatment of each diastereomer with i-PrMgCl resulted in the formation of magnesium carbenoids. Highly regiospecific 1,3-CH insertion reaction was found to take place from the magnesium carbenoids to afford cyclopropanes in high yields. Stereochemistry of the adducts, reaction mechanism, and origin of the regiospecificity are discussed.  相似文献   
63.
A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.  相似文献   
64.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(11):2247-2253
Separation of sodium dodecyl sulfate (SDS)-protein complexes is difficult on plastic microchips due to protein adsorption onto the wall. In this paper, we elucidated the reasons for the difficulties in separating SDS-protein complexes on plastic microchips, and we then demonstrated an effective method for separating proteins using polymethyl methacrylate (PMMA) microchips. Separation difficulties were found to be dependent on adsorption of SDS onto the hydrophobic surface of the channel, by which cathodic electroosmotic flow (EOF; reversed flow) was generated. Our developed method effectively utilized the reversed flow from this cathodic EOF as a driving force for sample proteins using permanently uncoated but dynamic SDS-coated PMMA microchips. High-speed (6 s) separation of proteins and peptides up to 116 kDa was successfully achieved using this system.  相似文献   
65.
66.
Pseudo-stationary phases for electrokinetic chromatography were prepared by the alkylation of starburst dendrimers (SBDs). The SBD-supported pseudo-stationary phase with dodecyl groups showed higher efficiency than short-akyl derivatives, and maintained the hydrophobic property inthe presence of methanol. The dodecyl-modified SBD provided wide migration time windows ar high methanol content to effect the separation of sixteen aromatic hydrocarbons, the priority pollutants designated by EPA, in 65% methanol. The selectivity of polymer-supported pseudo-stationary phase can be varied simply by changing the length of the alkyl groups. The dodecyl SBD showed relatively similar selectivity as sodium dodecyl culfate micelle, whereas short alkyl derivatives showed preference towards rigid and planar compounds based on the rigid and planar compounds based on the rigid polymer backbones. The selectivity of SBD-supported pseudo-stationary phases was dominated by the chain length of the alkyl groups, with the minor effect of the structure of the core and the generation of SBD where alkyl groups were attached.  相似文献   
67.
2-Mercapto-N-2-naphthylacetamide (thionalide) on silica gel is used for rapid preconcentration of μg l?1 levels of palladium(II) from aqueous solution, followed by atomic absorption spectrometric measurement. In batch experiments, palladium was quantitatively retained on the gel from solutions 5 M in acid to pH 8; equilibrium was achieved within 10 s. The chelating capacity of the gel was 7.5 μmol Pd g?1 at pH < 4. The effect of flow rate on retention was studied. Palladium retained on the column was completely eluted with 20 ml of 0.2 M thiourea in 0.1 M hydrochloric acid. The palladium concentration in sea water is shown to be < 0.3 μg l?1.  相似文献   
68.
M-MCM-41 catalysts (M: V, Cr, Fe, and Ga) prepared by direct hydrothermal synthesis (DHT) have been tested for dehydrogenation of ethylbenzene with CO2. The synthesized materials were characterized by X-ray diffraction (XRD), N2 adsorption (77 K), and diffuse reflectance UV–vis spectroscopic measurements. Cr-MCM-41 showed the highest activity among M-MCM-41 catalysts tested, resulting in the production of styrene with the conversion of 65% and the selectivity above 90%. The rate of styrene formation increased with increasing Cr loading up to 1.7 wt.%. It is suggested that Cr(VI)O4 in tetrahedral coordination is formed as an active monochromate species and reduced to Cr(III)O6 in octahedral coordination as a less active polychromate species during the reaction. Deactivated catalyst was regenerated by a treatment with gaseous oxygen or CO2, during which redistribution as well as reoxidation of polymeric Cr(III)O6 octahedra to monomeric Cr(VI)O4 tetrahedra was observed. The rate of CO formation increased together with that of styrene formation, while the rate of H2 formation decreased, with increasing partial pressure of CO2. It was confirmed that reverse water-gas shift reaction took place over Cr-MCM-41 by a separate experiment. The rate of CO formation during the dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 was well accounted for by assuming parallel occurrence of two reactions, i.e., direct oxidative dehydrogenation of ethylbenzene with CO2 and simple dehydrogenation of ethylbenzene thermodynamically assisted by reverse water-gas shift reaction.  相似文献   
69.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   
70.
Dehydrogenation of 10-methyl-9,10-dihydroacridine (AcrH(2)) by dioxygen (O(2)) proceeds efficiently, accompanied by the two-electron and four-electron reduction of O(2) to produce H(2)O(2) and H(2)O, which are effectively catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins in the presence of perchloric acid (HClO(4)) in acetonitrile (MeCN) and benzonitrile (PhCN), respectively. The cobalt porphyrin catalyzed two-electron reduction of O(2) also occurs efficiently by 9-alkyl-10-methyl-9,10-dihydroacridines (AcrHR; R = Me, Et, and CH(2)COOEt) to yield 9-alkyl-10-methylacridinium ion (AcrR+) and H(2)O(2). In the case of R = Bu(t) and CMe(2)COOMe, however, the catalytic two-electron and four-electron reduction of O(2) by AcrHR results in oxygenation of the alkyl group of AcrHR rather than dehydrogenation to yield 10-methylacridinium ion (AcrH+) and the oxygenated products of the alkyl groups, i.e., the corresponding hydroperoxides (ROOH) and the alcohol (ROH), respectively. The catalytic mechanisms of the dehydrogenation vs the oxygenation of AcrHR in the two-electron and four-electron reduction of O(2), catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins, respectively, are discussed in relation to the C(9)-H or C(9)-C bond cleavage of AcrHR radical cations produced in the electron-transfer oxidation of AcrHR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号