首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5009篇
  免费   113篇
  国内免费   31篇
化学   3433篇
晶体学   62篇
力学   66篇
数学   772篇
物理学   820篇
  2021年   29篇
  2020年   34篇
  2019年   59篇
  2018年   39篇
  2017年   40篇
  2016年   75篇
  2015年   72篇
  2014年   77篇
  2013年   247篇
  2012年   220篇
  2011年   278篇
  2010年   132篇
  2009年   140篇
  2008年   263篇
  2007年   255篇
  2006年   260篇
  2005年   269篇
  2004年   230篇
  2003年   191篇
  2002年   182篇
  2001年   91篇
  2000年   59篇
  1999年   56篇
  1998年   71篇
  1997年   60篇
  1996年   102篇
  1995年   84篇
  1994年   81篇
  1993年   69篇
  1992年   66篇
  1991年   60篇
  1990年   47篇
  1989年   40篇
  1988年   52篇
  1987年   52篇
  1986年   33篇
  1985年   52篇
  1984年   65篇
  1983年   48篇
  1982年   54篇
  1981年   64篇
  1980年   64篇
  1979年   65篇
  1978年   60篇
  1977年   45篇
  1976年   42篇
  1975年   48篇
  1974年   39篇
  1973年   36篇
  1969年   22篇
排序方式: 共有5153条查询结果,搜索用时 15 毫秒
951.
Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe(III)H(3)buea(X)](n-) (X = S(2-), O(2-), OH(-)). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe(III)(-)O vs Fe(III)(-)S complexes. It was found that the Fe(III)(-)O bond, while less covalent, is stronger than the Fe(III)(-)S bond. This dominantly reflects the larger ionic contribution to the Fe(III)(-)O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe(IV)(-)O complex with the same ligand environment. It was found that hydrogen bonding to Fe(IV)(-)O is less energetically favorable than that to Fe(III)(-)O, which reflects the highly covalent nature of the Fe(IV)(-)O bond.  相似文献   
952.
Pure component selectivity analysis (PCSA) was successfully utilized to enhance the robustness of a partial least squares (PLS) model by examining the selectivity of a given component to other components. The samples used in this study were composed of NH4OH, H2O2 and H2O, a popular etchant solution in the electronic industry. Corresponding near-infrared (NIR) spectra (9000-7500 cm−1) were used to build PLS models. The selective determination of H2O2 without influences from NH4OH and H2O was a key issue since its molecular structure is similar to that of H2O and NH4OH also has a hydroxyl functional group. The best spectral ranges for the determination of NH4OH and H2O2 were found with the use of moving window PLS (MW-PLS) and corresponding selectivity was examined by pure component selectivity analysis. The PLS calibration for NH4OH was free from interferences from the other components due to the presence of its unique NH absorption bands. Since the spectral variation from H2O2 was broadly overlapping and much less distinct than that from NH4OH, the selectivity and prediction performance for the H2O2 calibration were sensitively varied depending on the spectral ranges and number of factors used. PCSA, based on the comparison between regression vectors from PLS and the net analyte signal (NAS), was an effective method to prevent over-fitting of the H2O2 calibration. A robust H2O2 calibration model with minimal interferences from other components was developed. PCSA should be included as a standard method in PLS calibrations where prediction error only is the usual measure of performance.  相似文献   
953.
Lo KK  Tsang KH  Sze KS 《Inorganic chemistry》2006,45(4):1714-1722
We report the synthesis and characterization of luminescent rhenium(I) amidodipyridoquinoxaline biotin complexes [Re(CO)3(dpqa)(L)](PF6) (dpqa = 2-(n-butylamido)dipyrido[3,2-f:2',3'-h]quinoxaline; L = 4-(biotinamidomethyl)pyridine (py-4-CH2-NH-biotin) (1), 3-(N-((2-biotinamido)ethyl)amido)pyridine (py-3-CO-NH-en-NH-biotin) (2), 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine (py-4-CH2-NH-cap-NH-biotin) (3)), and their biotin-free counterpart [Re(CO)3(dpqa)(py)](PF6) (py = pyridine (4)). Upon irradiation, these complexes exhibited intense triplet metal-to-ligand charge-transfer (3MLCT) (dpi(Re) --> pi(dpqa)) emission in fluid solutions at 298 K and in alcohol glass at 77 K. However, the emission became much weaker in aqueous buffer, probably due to the interactions of water molecules with the amide substituent of the dpqa ligand. These properties render the complexes good candidates as luminescent probes for hydrophobic media, such as the substrate-binding sites of proteins. The avidin-binding properties of the new biotin complexes have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. Most importantly, the complexes showed a profound increase in emission intensities upon binding to avidin. Additionally, we found that the fluorescence of anthracene was quenched by these rhenium(I) complexes, and the 3MLCT emission of the complexes was also quenched by anthracene. On the basis of these findings, new homogeneous assays for biotin using these complexes, avidin, and anthracene-labeled avidin have been designed.  相似文献   
954.
To model thioether-copper coordination chemistry including oxidative reactivity, such as occurs in the copper monooxygenases peptidylglycine -hydroxylating monooxygenase (PHM) and dopamine beta-hydroxylase (DbetaH), we have synthesized new tridentate N2S ligands LSEP and LSBz [LSEP = methyl(2-phenethylsulfanylpropyl)(2-pyridin-2-ylethyl)amine; LSBz = (2-benzylsulfanylpropyl)methyl(2-pyridin-2-ylethyl)amine)]. Both copper(I) and copper(II) complexes have been prepared, and their respective O2 and H2O2 chemistry has been studied. Under mild conditions, oxygenation of [(LSEP)CuI]+ (1a) and [(LSBz)CuI]+ (2a) leads to ligand sulfoxidation, thus exhibiting copper monooxygenase activity. A copper(II) complex of this sulfoxide ligand product, [(LSOEP)CuII(CH3OH)(OClO3)2], has been structurally characterized, demonstrating Cu-Osulfoxide ligation. The X-ray structure of [(LSEP)CuII(H2O)(OClO3)]+ (1b) and its solution UV-visible spectral properties [S-CuII LMCT band at 365 nm (MeCN solvent); epsilon = 4285 M-1 cm-1] indicate the thioether sulfur atom is bound to the cupric ion in both the solid (CuII-S distance: 2.31 A) and solution states. Reaction of 1b with H2O2 leads to sulfonation via the sulfoxide; excess hydrogen peroxide gives mostly sulfone product. These results may provide some insight into recent reports concerning protein methionine oxidation, showing the potential importance of copper-mediated oxidation processes in certain biological settings.  相似文献   
955.
A new prenylated xanthone, 5-O-methylcelebixanthone (1), together with six known compounds; celebixanthone (2), 1,3,7-trihydroxy-2,4-di(3-methylbut-2-enyl)xanthone (3), cochinchinone A (4), alpha-mangostin (5), beta-mangostin (6) and cochinchinone C (7) were isolated from roots of Cratoxylum cochinchinense. Their structures were elucidated by spectroscopic methods. Compounds 2 and 4-7 showed cytotoxic activity against the human lung cancer cell line (NCI-H187) with IC(50) values ranging from 0.65 to 5.2 microg/ml. Compounds 1, 2, 6 and 7 also showed antimalarial activity against Plasmodium falciparum with IC(50) values of 3.2, 4.9, 7.2 and 2.6 microg/ml, respectively.  相似文献   
956.
The essential oil of aerial parts of Salviamicrostegia Boiss. et Balansa (Lamiaceae) growing wild in Lebanon was obtained by hydrodistillation and was analysed by GC and GC-MS. 70 compounds, representing 94.0% of the oil, were identified. The major components were caryophyllene oxide (6.2%), pulegone (5.7%), 4-vinylguaiacole (5.3%), hexadecanoic acid (5.1%) and menthone (4.9%).  相似文献   
957.
Although the "Golden" years of spectroscopy and the major studies on ionization processes now are behind us, as with many branches of science, much yet remains to be gleaned from such topics that is both full of interest and of significance to present day research. Presented here is one such overlooked example, an observation that relates to both these fields. An analysis is presented for the periodic table concerning the gas-phase thermochemical nature of MO+ and MO2+ ions. Unexpectedly, a pattern of 18 elements has been identified that exhibit the potential for having long-lived MO+ ions. Normally such molecular ions are expected to decay extremely rapidly by dissociative recombination with electrons, but in particular, 12 of this group behave not like molecules but rather as atomic ions. These are the diatomic oxide ions of Sc, Y, La, Zr, Hf, Ce, Pr, Nd, Pm, Gd, Tb, and Th. In the gas phase, they decay by much slower three-body recombination channels. As may be noted, these elements are located in the first two columns of the transition elements, among the earlier rare earths and an actinide. From all the elements, UO2+ is the only dioxide ion that behaves similarly. These findings now elevate the potential importance of these ions and should facilitate their spectral characterization. Moreover, subsequent comparisons with spectra of well-known isoelectronic and isovalent neutral monoxides and other diatomics will help in the stimulation of further theoretical advances. In addition, once characterized, an ease of spectrally monitoring such ionic states will provide a useful analytical tool.  相似文献   
958.
Cp*Mo(CO)3CF3 undergoes two-electron reduction using potassium graphite or magnesium graphite to give Cp*Mo(CO)2(CF), the first example of a transition metal complex containing a terminal fluoromethylidyne ligand, which has been characterized spectroscopically, crystallographically, and computationally.  相似文献   
959.
The activation of dioxygen (O(2)) by Cu(I) complexes is an important process in biological systems and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is accepted generally to be the active oxidant. Reported here is the characterization and reactivity of a mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the secondary diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED), [(DBED)Cu(MeCN)](X) (1.X, X = CF(3)SO(3)(-), CH(3)SO(3)(-), SbF(6)(-), BF(4)(-)), with O(2) at 193 K to give [[Cu(DBED)](2)(O(2))](X)(2) (2.X(2)). The UV-vis and resonance Raman spectroscopic features of 2 vary with the counteranion employed yet are invariant with change of solvent. These results implicate an intimate interaction of the counteranions with the Cu(2)O(2) core. Such interactions are supported further by extended X-ray absorption fine structure (EXAFS) analyses of solutions that reveal weak copper-counteranion interactions. The accessibility of the Cu(2)O(2) core to exogenous ligands such as these counteranions is manifest further in the reactivity of 2 with externally added substrates. Most notable is the hydroxylation reactivity with phenolates to give catechol and quinone products. Thus the strategy of using simple bidentate ligands at low temperatures provides not only spectroscopic models of tyrosinase but also functional models.  相似文献   
960.
The synthesis of a triglycosylated helical foldamer based on a combination of cyclopentyl- and pyrrolidinyl-based amino acids is described. This structure is stable in water, maintaining as it does a series of carbohydrate units in proximity to one another, and represents the basis of a new approach to the study of carbohydrate-carbohydrate interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号