首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4911篇
  免费   166篇
  国内免费   20篇
化学   3572篇
晶体学   51篇
力学   105篇
数学   268篇
物理学   1101篇
  2022年   37篇
  2021年   54篇
  2020年   62篇
  2019年   55篇
  2018年   46篇
  2017年   42篇
  2016年   97篇
  2015年   99篇
  2014年   113篇
  2013年   232篇
  2012年   270篇
  2011年   322篇
  2010年   157篇
  2009年   138篇
  2008年   256篇
  2007年   253篇
  2006年   257篇
  2005年   222篇
  2004年   238篇
  2003年   202篇
  2002年   208篇
  2001年   134篇
  2000年   114篇
  1999年   74篇
  1998年   55篇
  1997年   56篇
  1996年   63篇
  1995年   49篇
  1994年   62篇
  1993年   60篇
  1992年   64篇
  1991年   43篇
  1990年   43篇
  1989年   52篇
  1988年   44篇
  1987年   45篇
  1986年   44篇
  1985年   85篇
  1984年   79篇
  1983年   28篇
  1982年   46篇
  1981年   38篇
  1980年   40篇
  1979年   71篇
  1978年   47篇
  1977年   59篇
  1976年   50篇
  1975年   33篇
  1974年   29篇
  1972年   20篇
排序方式: 共有5097条查询结果,搜索用时 31 毫秒
991.
The catalytic durability of an organic photocatalyst, 9-mesityl-10-methyl acridinium ion (Acr(+)-Mes), has been dramatically improved by the addition of [{tris(2-pyridylmethyl)amine}Cu(II)](ClO(4))(2) ([(tmpa)Cu(II)](2+)) in the photocatalytic oxygenation of p-xylene by molecular oxygen in acetonitrile. Such an improvement is not observed by the addition of Cu(ClO(4))(2) in the absence of organic ligands. The addition of [(tmpa)Cu](2+) in the reaction solution resulted in more than an 11 times higher turnover number (TON) compared with the TON obtained without [(tmpa)Cu(II)](2+). In the photocatalytic oxygenation, a stoichiometric amount of H(2)O(2) formation was observed in the absence of [(tmpa)Cu(II)](2+), however, much less H(2)O(2) formation was observed in the presence of [(tmpa)Cu(II)](2+). The photocatalytic mechanism was investigated by laser flash photolysis measurements in order to detect intermediates. The reaction of O(2)˙(-) with [(tmpa)Cu(II)](2+) monitored by UV-vis spectroscopy in propionitrile at 203 K suggested formation of [{(tmpa)Cu(II)}(2)O(2)](2+), a transformation which is crucial for the overall 4-electron reduction of molecular O(2) to water, and a key in the observed improvement in the catalytic durability of Acr(+)-Mes.  相似文献   
992.
Dinuclear complexes [{Pt(trpy)}(2)(L)](PF(6))(2) (trpy = 2,2':6',2'-terpyridine, L = 2-octylthio-1,3,5-triazine-4,6-dithiolate ion (1), L = 2-octadecylthio-1,3,5-triazine-4,6-dithiolate ion (2), L = 2-di-n-butylamino-1,3,5-triazine-4,6-dithiolate ion (3)) and a trinuclear complex [{Pt(trpy)}(3)(L)](PF(6))(3) (L = 1,3,5-triazine-2,4,6-trithiolate ion (4)) have been synthesized and characterized. The single crystal X-ray analysis revealed that the two {Pt(trpy)}(2+) fragments in 1 and 3 adopt a syn-configuration. The PtPt distances are around 4.3 ?, suggesting no intramolecular PtPt interactions. Complexes 1-4 in acetonitrile show broad absorption bands at around 470 nm, assigned to mainly the ligand-to-ligand charge transfer ((1)LLCT) from triazine thiolates to trpy based on the comparison to the related complexes and the density functional theory (DFT) calculations. The red luminescence of 1-4 in acetonitrile is attributable to emission predominantly from (3)LLCT. Cyclic voltammograms of 1-3 exhibit four redox couples from -2.0 V to 0 V vs. Ag/AgCl. The two consecutive processes at around -0.70 V are assigned to the sequential reduction of two trpy ligands. This assignment was further supported by the observation of the anion radical of trpy in spectroelectrochemical experiments. The splitting of the redox potentials of two trpy ligands evidences the moderate electronic coupling interactions mediated by the triazine dithiolate bridges. Complex 2 formed a transparent red gel in CH(3)CN, whereas 4 produced a gel-like solid in the mixtures of CH(3)CN and other solvents. The interactions dominating the aggregative behaviours have been discussed based on the results of electronic absorption and emission spectroscopy.  相似文献   
993.
As part of a comprehensive strategy to the welwitindolinone alkaloids possessing a bicyclo[4.3.1]decane core, we report herein concise asymmetric total syntheses of (-)-N-methylwelwitindolinone C isothiocyanate (2a), (-)-N-methylwelwitindolinone C isonitrile (2b), and (-)-3-hydroxy-N-methylwelwitindolinone C isothiocyanate (3a) from a common tetracyclic intermediate. The crucial vinyl chloride moiety was installed through electrophilic chlorination of a hydrazone, but only after adjustment of reactivity to circumvent a facile skeletal rearrangement. Selective desulfurization and oxidation of 2a provided access to 2b and 3a, respectively. Notably, this work provides corrected (1)H and (13)C NMR spectral data for 3a.  相似文献   
994.
The first nickel-catalyzed C-H bond arylation of azoles with phenol derivatives is described. The new Ni(cod)(2)/dcype catalytic system is active for the coupling of various phenol derivatives such as esters, carbamates, carbonates, sulfamates, triflates, tosylates, and mesylates. With this C-H/C-O biaryl coupling, we synthesized a series of privileged 2-arylazoles, including biologically active alkaloids. Moreover, we demonstrated the utility of the present reaction for functionalizing estrone and quinine.  相似文献   
995.
We have synthesized and characterized homogeneous solid-solution alloy nanoparticles of Pd and Rh, which are immiscible with each other in the equilibrium bulk state at around room temperature. The Pd-Rh alloy nanoparticles can absorb hydrogen at ambient pressure and the hydrogen pressure of Pd-Rh alloys for hydrogen storage is dramatically decreased by more than 4 orders of magnitude from the corresponding pressure in the metastable bulk state. The solid-solution state is still maintained in the nanoparticles even after hydrogen absorption/desorption, in contrast to the metastable bulks which are separated into Pd and Rh during the process.  相似文献   
996.
We report nanosize-induced hydrogen storage in Ir, which does not absorb hydrogen in its bulk form. The mean diameter of the obtained Ir nanoparticles was estimated as 1.5 ± 0.5 nm by transmission electron microscopy. Hydrogen storage was confirmed by solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements.  相似文献   
997.
The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.  相似文献   
998.
The cooperative catalysis by palladium and triphenylborane effects the intramolecular oxycyanation of alkenes through the cleavage of O-CN bonds and the subsequent insertion of double bonds. The use of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) as a ligand for palladium is essential for allowing the transformation to proceed with high chemo- and regioselectivity. Variously substituted dihydrobenzofurans with both a tetra-substituted carbon and cyano functionality are accessed by the newly developed methodology.  相似文献   
999.
1000.
To assess the ability of densimetry for CO2 fluid in CO2 inclusions, we compare two methods, microthermometry and Raman microspectroscopic densimetry for CO2. The comparative experiment was performed for nine CO2 inclusions in three mantle xenoliths. The results are as follows: (1) microthermometry precisely determines CO2 density with the range of 0.65 to 1.18 g/cm3 compared with Raman microspectroscopic densimetry; (2) CO2 density obtained by Raman microspectroscopic densimetry is fairly consistent with that by microthermometry; (3) it is hard to determine CO2 density in CO2 inclusion with diameter of less than around 3 µm using microthermometry; and (4) microthermometry can be applied only to the CO2 inclusion whose CO2 density ranges from around 0.65 to 1.18 g/cm3, whereas the Raman microspectroscopic densimetry is applicable to CO2 density ranging from 0.1 to 1.24 g/cm3. The above features carry the potential for estimation of depth origin of mantle‐derived rocks. The depth where the rocks were trapped by host magma can be estimated using both geothermometric data and CO2 fluid density in CO2 inclusions in the rocks. Typical precisions of density of CO2 in CO2 inclusions obtained by the Raman microspectroscopic densimetry (~0.01 g/cm3) and by the microthermometry (< 0.001 g/cm3) correspond to uncertainties in the depth origin of 2.4 km and < 1.7 km, respectively, at 1000 ± 50 °C. In case of the mantle under 750–1250 °C and 1 GPa, the CO2 fluid has a density ranging from 1.06 g/cm3 to 1.21 g/cm3, which are well measured by the Raman microspectroscopic densimetry. Combination of both densimetries for CO2 in mantle minerals elucidates the deep structure of the Earth. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号