首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   1篇
  国内免费   3篇
化学   43篇
晶体学   2篇
力学   4篇
数学   14篇
物理学   58篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1933年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
111.
The size (volume) of a large tetrametallic molecular square, that has resisted characterization by mass spectrometry, has been determined by pulsed-field gradient NMR spectroscopy, a technique that reports on self-diffusion coefficients. These scale inversely with hydrodynamic radii, which in turn scale approximately as the cube of the assembly's mass. The technique has also been used to determine whether NMR spectral complexities observed for the new compound are due to contamination with chemically related assemblies, or instead reflect the intrinsic structural complexities of the compound itself.  相似文献   
112.
This report describes the extent to which ear-canal acoustic admittance and energy reflectance (YR) in human neonates (1) predict otoacoustic emission (OAE) levels and auditory brainstem response (ABR) latencies, and (2) classify OAE and ABR responses as present or absent. Analyses are reported on a subset of ears in which hearing screening measurements were obtained previously [Norton et al., Ear. Hear. 21, 348-356 (2000a)]. Tests on 1405 ears included YR, distortion-product OAEs, transient-evoked OAEs, and ABR. Principal components analysis reduced the 33 YR variables to 5-7 factors. OAE levels decreased and ABR latencies increased with increasing high-frequency energy reflectance. Up to 28% of the variance in OAE levels and 12% of the variance in ABR wave-V latencies were explained by these factors. Thus, the YR response indirectly encodes information on inter-ear variations in forward and reverse middle-ear transmission. The YR factors classify OAEs with an area under the relative operating characteristic (ROC) curve as high as 0.79, suggesting that middle-ear dysfunction is partly responsible for the inability to record OAEs in some ears. The YR factors classified ABR responses less well, with ROC areas of 0.64 for predicting wave-V latency and 0.56 for predicting Fsp.  相似文献   
113.
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.  相似文献   
114.
A frequency-domain based system for measuring acoustic impedance and reflection coefficient is described. The calibration procedure uses a least-mean-squares approximation to the Thevenin parameters describing the source and receiver characteristics in which the data measured on closed, cylindrical tubes are matched to a viscothermal tube model. The system is intended for use in acoustical measurement in human ear canals, in which the cross-sectional area of the ear canal at the point of insertion is imprecisely known. This area is acoustically estimated from the impedance data, and the reflection coefficient is calculated in terms of this area and the impedance data. Measurements on a variety of closed tubes show the method is accurate over the frequency range investigated (less than 10.7 kHz). The time-domain reflection function is evaluated by transforming the reflection coefficient from the frequency domain, but the finite bandwidth of the measured data limits the accuracy of time-domain response measurements. The method is well suited for frequency-domain measurements in human ear canals.  相似文献   
115.
GA Shah 《Pramana》1974,3(5):338-353
Simple models of a reflection nebula in the form of a plane-parallel slab containing smooth spherical solid particles in submicron size range have been considered. Single scattering has been assumed. The effect of varying the composition and size distribution function of the grains have been brought out in the calculations using Mie theory of scattering. The analytical part of the geometry of the problem has been treated quite rigorously and the resulting expression for nebular intensity has been presented in a somewhat new form. In this paper, the case of the star behind the nebula has been examined. A comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with index of refraction about 1·3–0·1i and size parametera 0 = 0·5μ give reasonable agreement with the colours. Simultaneously, the polarization in the visual and blue wavelength bands agree approximately up to offset angle of 6 minutes of arc. The larger offset angles pose an intriguing problem. The general trends of nebular colours and polarization with variation of real and imaginary parts of index of refraction and the size distribution parameter have been tabulated to serve as a guide for further study of reflection nebulae with the star in the rear. A part of this work was presented at the first scientific meeting of the Astronomical Society of India, held on 27 and 28 February 1974 at Hyderabad. An erratum to this article is available at .  相似文献   
116.
The Kramers-Kronig transformation has been extensively applied in optical spectroscopy to calculate the real component of an optical quantity from the imaginary component, such as the real refractive index from the imaginary component, or vice versa. In this paper, the traditional proof of the Kramers-Kronig transformation, and its application to the complex refractive index, complex dielectric constant, and complex molar polarizability, are reviewed. Often the imaginary components of these quantities are fitted with standard lineshapes such as the Gaussian, Lorentzian, or Classical Damped Harmonic Oscillator (CDHO) lineshapes. It is shown that the usual Gaussian and Lorentzian lineshapes do not meet the physical criteria of these imaginary components nor the conditions of the Kramers-Kronig transformation since they are not odd functions of wavenumber. However, the CDHO lineshape meets the physical criteria of the imaginary components of these optical quantities and the Kramers-Kronig transformation. Modifications are presented that make the Gaussian and Lorentzian odd. The Gaussian decays so fast that the modification is not needed in practice; however, the Lorentzian is much slower to decay and thus modification is necessary whenever fitting peaks below approximately 250 cm(-1). Since the computational difference between the usual Lorentzian and modified Lorentzian is negligible, the author recommends that only the modified Lorentzian be used when fitting bands with a Lorentzian lineshape. Copyright 2001 Academic Press.  相似文献   
117.
CHEN  Wen-bin GA  O  Fang  LU  Shi-ping 《数学季刊》2013,(4):585-591
In this paper, by using the continuation theorem of coincidence degree theory and some analysis methods, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with a deviating argument,some new results on the existence of periodic solutions is obtained.  相似文献   
118.
The phase behaviour of the middle-phase microemulsion for the quaternary system lauric-N-methylglucamide (MEGA-12)/n-butanollalkane/water has been studied with Winsor type, δ-γ, fishlike and novel ε-β fishlike phase diagrams. A series of phase inversions Winsor I (2)→Ⅲ(3)→Ⅱ ( 2 ) were observed for the three kinds of phase diagrams. The phase types, the phase volumes and the range of alcohol concentrations from the beginning to the end of the middle-phase microemulsion were obtained from Winsor phase diagram. From δ-γ, fishlike phase diagram, the physicochemical parameters, such as the mass fraction of n-butanol in the hydrophile-lipophile balanced inteffacial layer, A^s, the coordinates of the start and end points of the middle-phase microemulsion, and the solubilities of MEGA-12 and n-butanol in alkane phase were calculated. The novel ε-β fishlike phase diagram was also presented. From this kind of diagram, the above experimental phenomena were observed and the physicochemical parameters were calculated precisely. The novel fishlike phase diagram has advantages over the Winsor and δ-γ fishlike phase diagrams in the evaluation of the solubilization power of the microemulsion and calculation of the related physicochemical parameters.  相似文献   
119.
120.
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号