首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   43篇
  国内免费   5篇
化学   780篇
晶体学   9篇
力学   21篇
数学   41篇
物理学   216篇
  2023年   10篇
  2022年   8篇
  2021年   15篇
  2020年   22篇
  2019年   22篇
  2018年   13篇
  2017年   6篇
  2016年   27篇
  2015年   23篇
  2014年   17篇
  2013年   61篇
  2012年   79篇
  2011年   81篇
  2010年   34篇
  2009年   62篇
  2008年   67篇
  2007年   64篇
  2006年   51篇
  2005年   72篇
  2004年   51篇
  2003年   48篇
  2002年   40篇
  2001年   13篇
  2000年   19篇
  1999年   14篇
  1998年   8篇
  1997年   3篇
  1996年   11篇
  1995年   7篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   2篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1067条查询结果,搜索用时 31 毫秒
171.
A disulfide-carrying telomer with many pendent N-acetylglucosamine (GlcNAc) residues (Cys-PMHGlcNAc) was obtained by photo-polymerization of 1-(6'-methacryloylaminohexyl)-2-N-acetoamido-2-deoxy d-glucopyranoside) (MHGlcNAc) using a benzyl N,N-diethyldithiocarbamoyl (BDC) derivative that shows abilities of initiation, transfer, and termination (iniferter). The disulfide-carrying telomer was accumulated on a monolayer of colloidal Au on a glass substrate, and the interaction of wheat germ agglutinin (WGA) with GlcNAc residue at the polymer brush-solution interface was examined by using the localized surface plasmon resonance (LSPR) technique. For comparison, an amphiphile carrying many pendent GlcNAc residues was also prepared with MHGlcNAc and a lipophilic radical initiator and was incorporated in a phospholipid liposome to examine interaction of the GlcNAc residue with WGA on the liposome surface using turbidity measurements. Both the colloidal gold optical device and the liposome showed a concentration-dependent specific binding of WGA, and the GlcNAc-carrying liposome had a detection limit of 100 nM for WGA, whereas that of the colloidal gold device was 10nM. The sugar-carrying telomer-coated device examined here is not only useful as a simple biosensor chip but is also expected to expand our knowledge of bio-related phenomena at the liquid-telomer brush interfaces on a colloidal Au.  相似文献   
172.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   
173.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   
174.
Unsymmetrical gold(III)-dithiolene complexes are potential candidates for molecular materials that exhibit thermal structural phase transitions. In this study, unsymmetrical ppy-gold(III) (ppy=C-deprotonated-2-phenylpyridine(−)) complexes [AuC5] and [AuC6] coordinated by dithiolene ligands containing tetrathiafulvalene (TTF) skeletons with pentylthio (2-{bis(pentylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) and hexylthio groups (2-{bis(hexylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) were synthesized. Both complexes exhibited a large absorption band at approximately 508 nm, owing to intramolecular ligand-to-ligand charge transfer. One-dimensional columnar structures with head-to-tail molecular arrangements around the metal ions were constructed in the crystals. The flexible alkylthio groups were intercalated into crystalline spaces between dithiolene ligands in the columns. [AuC5] exhibits a simple phase transition at 198 °C between crystalline and isotropic phases irreversibly. The crystalline phase of [AuC6] observed at 25 °C melted at 148 °C. Another crystalline phase grew above 148 °C with a very slow crystallization rate from the liquid phase and was completely transformed into an isotropic phase at 200 °C.  相似文献   
175.
We report the structural design and control of electronic states of a new series of ultrafine metal–organic right square prism‐shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states.  相似文献   
176.
177.
The direct formation of ammonia from molecular dinitrogen under mild reaction conditions was achieved by using new cobalt dinitrogen complexes bearing an anionic PNP‐type pincer ligand. Up to 15.9 equivalents of ammonia were produced based on the amount of catalyst together with 1.0 equivalent of hydrazine (17.9 equiv of fixed nitrogen atoms).  相似文献   
178.
In Asian countries, sesame seed oil unsaponified matter is used as a natural food additive due to its associated antioxidant effects. We determined and purified the primary lignans sesamin and sesamolin in sesame seed oil unsaponified matter using reversed‐phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high‐speed countercurrent chromatography. Calibration curves showed good correlation coefficients (r2 > 0.999, range 0.08 and/or 0.15 to 5 μg/mL) with a limit of detection (at 290 nm) of 0.02 μg/mL for sesamin and 0.04 μg/mL for sesamolin. Sesame seed oil unsaponified matter contained 2.82% sesamin and 2.54% sesamolin, respectively. Direct qualitative analysis of sesamin and sesamolin was achieved using quadrupole mass spectrometry with positive‐mode electrospray ionization. Pure (>99%) sesamin and sesamolin standards were obtained using high‐speed countercurrent chromatographic purification (hexane/ethyl acetate/methanol/water; 7:3:7:3). An effective method for determining and purifying sesamin and sesamolin from sesame seed oil unsaponified matter was developed by combining these separation techniques for standardized food additives.  相似文献   
179.
The chemical behavior of silica in the water samples from Death Valley were examined by the speciation of silica and the measurements of the silica and alkaline and alkaline earth cation contents to compare with those from the arid area in Xinjiang, Northwest China. Basically, the chemical behavior of silica in spring water samples from Death Valley coherent with those in Xinjiang, Northwest China. And the observed chemical species of silica with alkaline and alkaline earth cations in spring water samples in Death Valley were in good agreement with those in Xinjiang, Northwest China. However, some of the silica behavior observed in water samples in Death Valley was distinct from those observed in Xinjiang, Northwest China. It is considered that some of the water samples in Death Valley were subject to evaporation process.  相似文献   
180.
Photoisomerization and thermal isomerization behaviors of an extensive series of arylazoimidazoles are investigated. Absorption spectra are characterized by a structured pipi* absorption band around 330-400 nm with a tail on the lower energy side extending to 500 nm corresponding to an npi* transition. The trans-to-cis photoisomerization occurs on excitation into these absorption bands. The quantum yields are dependent on the excitation wavelength, as observed for azobenzene derivatives, but are generally larger than those of azobenzene. The thermal cis-to-trans isomerization rates are also generally larger than that of azobenzene and are comparable to those of 4-N,N-dimethylaminoazobenzene and 4-nitroazobenzene. Arylazoimidazoles with no substituent on the imidazole nitrogen are unique in that the quantum yield for the trans-to-cis photoisomerization and the rate of thermal cis-to-trans isomerization are particularly large. It is proposed that the fast thermal isomerization is due to an involvement of self-catalyzed and protic molecule-assisted tautomerization to a hydrazone form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号