首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   964篇
  免费   33篇
  国内免费   2篇
化学   806篇
晶体学   10篇
力学   6篇
数学   24篇
物理学   153篇
  2023年   4篇
  2022年   7篇
  2021年   10篇
  2020年   26篇
  2019年   15篇
  2018年   16篇
  2017年   9篇
  2016年   19篇
  2015年   14篇
  2014年   24篇
  2013年   47篇
  2012年   52篇
  2011年   66篇
  2010年   34篇
  2009年   38篇
  2008年   65篇
  2007年   63篇
  2006年   54篇
  2005年   54篇
  2004年   59篇
  2003年   50篇
  2002年   30篇
  2001年   9篇
  2000年   16篇
  1999年   12篇
  1998年   8篇
  1997年   11篇
  1996年   13篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   12篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   5篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1968年   2篇
  1967年   2篇
排序方式: 共有999条查询结果,搜索用时 31 毫秒
61.
An intramolecular aromatic oxidation of a phenolic compound with a hypervalent iodine reagent afforded the coupling product, in which the coupling took place at the para-position of the methoxy goup of the starting material instead of the desired para-position of the isopropenyl group, unfortunately.   相似文献   
62.
We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.  相似文献   
63.
We introduce a U(1) lattice gauge theory with dual gauge fields and study its phase structure. This system is partly motivated by unconventional superconductors like extended s-wave and d  -wave superconductors in the strongly-correlated electron systems and also studies of the t–JtJ model in the slave-particle representation. In this theory, the “Cooper-pair” (or RVB spinon-pair) field is put on links of a cubic lattice due to strong on-site repulsion between original electrons in contrast to the ordinary s  -wave pair field on sites. This pair field behaves as a gauge field dual to the U(1) gauge field coupled with the hopping of electrons or quasi-particles of the t–JtJ model, holons and spinons. By Monte Carlo simulations we study this lattice gauge model and find a first-order phase transition from the normal state to the Higgs (superconducting) phase. Each gauge field works as a Higgs field for the other gauge field. This mechanism requires no scalar fields in contrast to the ordinary Higgs mechanism. An explicit microscopic model is introduced, the low-energy effective theory of which is viewed as a special case of the present model.  相似文献   
64.
Non‐coordinative interactions between a metal ion and the aromatic ring of a fluorophore can act as a versatile sensing mechanism for the detection of metal ions with a large emission change of fluorophores. We report the design of fluorescent probes based on arene–metal‐ion interactions and their biological applications. This study found that various probes having different fluorophores and metal binding units displayed significant emission redshift upon complexation with metal ions, such as AgI, CdII, HgII, and PbII. X‐ray crystallography of the complexes confirmed that the metal ions were held in close proximity to the fluorophore to form an arene–metal‐ion interaction. Electronic structure calculations based on TDDFT offered a theoretical basis for the sensing mechanism, thus showing that metal ions electrostatically modulate the energy levels of the molecular orbitals of the fluorophore. A fluorescent probe was successfully applied to the ratiometric detection of the uptake of CdII ions and hydrogen sulfide (H2S) in living cells. These results highlight the utility of interactions between arene groups and metal ions in biological analyses.  相似文献   
65.
66.
Nanoscale defects in the outer tube to preserve the electrical and optical features of the inner tube can be engineered to exploit the intrinsic properties of double walled carbon nanotubes (DWCNTs) for various promising applications. We demonstrated a selective way to make defects in the outer tube by the fluorination of DWCNTs followed by the thermal detachment of the F atoms at 1000 °C in argon. Fluorinated DWCNTs with different amounts of F atoms were prepared by reacting with fluorine gas at 25, 200, and 400 °C that gave the stoichiometry of CF0.20, CF0.30, and CF0.43, respectively. At the three different temperatures used, we observed preservation of the coaxial morphology in the fluorinated DWCNTs. For the DWCNTs fluorinated at 25 and 200 °C, the strong radial breathing modes (RBMs) of the inner tube and weakened RBMs of the outer tube indicated selective fluorine attachment onto the outer tube. However, the disappearance of the RBMs in the Raman spectrum of the DWCNTs fluorinated at 400 °C showed the introduction of F atoms onto both inner and outer tubes. There was no significant change in the morphology and optical properties when the DWCNTs fluorinated at 25 and 200 °C were thermally treated at 1000 °C in argon. However, in the case of the DWCNTs fluorinated at 400 °C, the recovery of strong RBMs from the inner tube and weakened RBMs from the outer tube indicated the selective introduction of substantial defects on the outer tube while preserving the original tubular shape. The thermal detachment of F atoms from fluorinated DWCNTs is an efficient way to make highly defective outer tubes for preserving the electrical conduction and optical activity of the inner tubes.  相似文献   
67.
An S-shaped double helicene-like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex-catalyzed highly diastereo- and enantioselective intramolecular double [2+2+2] cycloaddition of a 2-naphthol- and benzene-linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S-shaped double helicene-like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S-shaped double helicene-like molecule forms a trimer through the multiple C−H⋅⋅⋅π and C−H⋅⋅⋅O interactions in the solid-state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S-shaped double helicene-like molecule enhanced the chiroptical properties.  相似文献   
68.
The silaboration of [1.1.1]propellane enables direct introduction of B and Si functional groups onto the bicyclo[1.1.1]pentane (BCP) scaffold in high yield under mild, additive‐free conditions. The silaborated BCP can be obtained on a gram‐scale in a single step without the need for column‐chromatographic purification, and is storable and easy to handle, providing a versatile synthetic intermediate for BCP derivatives. We also describe various conversions of the C?B/C?Si bonds on the BCP scaffold, including development of a modified Suzuki–Miyaura cross‐coupling reaction at the highly sterically hindered bridgehead sp3 carbon center of the BCP skeleton using a combination of highly activated BCP boronic esters, copper(I) oxide, and a PdCl2(dppf) catalyst system.  相似文献   
69.
Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome‐editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical‐induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号