首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32728篇
  免费   210篇
  国内免费   276篇
化学   13276篇
晶体学   316篇
力学   1419篇
综合类   14篇
数学   9069篇
物理学   9120篇
  2021年   51篇
  2020年   77篇
  2019年   75篇
  2018年   1232篇
  2017年   1464篇
  2016年   769篇
  2015年   633篇
  2014年   529篇
  2013年   831篇
  2012年   3292篇
  2011年   2473篇
  2010年   1905篇
  2009年   1661篇
  2008年   722篇
  2007年   816篇
  2006年   781篇
  2005年   4638篇
  2004年   4070篇
  2003年   2443篇
  2002年   632篇
  2001年   389篇
  2000年   195篇
  1999年   240篇
  1998年   156篇
  1997年   105篇
  1996年   118篇
  1995年   93篇
  1994年   89篇
  1993年   85篇
  1992年   232篇
  1991年   216篇
  1990年   185篇
  1989年   160篇
  1988年   148篇
  1987年   113篇
  1986年   90篇
  1985年   121篇
  1984年   98篇
  1983年   65篇
  1982年   68篇
  1981年   63篇
  1980年   65篇
  1979年   82篇
  1978年   69篇
  1977年   50篇
  1976年   116篇
  1975年   60篇
  1974年   66篇
  1973年   73篇
  1972年   54篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
Cucurbituril a molecular container (or host) has a rigid hollow interior cavity which is large enough to accommodate, one or more, smaller molecules (or guests). The cavity is accessible through two carbonyl portal openings. Molecules or guests enter the …  相似文献   
202.
203.
This paper reports the results of a variety of experiments carried out for understanding the solvation behavior of potassium thiocyanate in methanol–water mixtures. Electrical conductivity, speed of sound, viscosity, and FT-Raman spectra of potassium thiocyanate solutions in 5 and 10% methanol–water (w/w) mixtures were measured as functions of concentration and temperature. The conductivity and structural relaxation time suggest the ion–solvent and solvent-separated ion–ion associations increase as the salt concentration increases in the mixtures. The Raman band shifts due to the C–O stretching mode of methanol for the solvent mixtures reveal the formation of methanol–water complexes. The significant changes in the Raman bands for the C–N, C–S and O–H stretching modes indicate the presence of SCN−solvent interactions through the N-end, “free” SCN and the solvent-shared ion pairs as potassium thiocyanate is added to the methanol–water mixtures. The relative changes corresponding to H–O–H bending and C–O stretching frequencies indicate that K+ is preferentially solvated by water in these solvent mixtures. The appearance and increase of the intensity of a broad band at ≈940 cm−1 upon salt addition was attributed to the SCN–H2O–K+ solvent-shared ion pairs. No Raman spectral evidence for K+(H2O)n species was observed. The preferential solvation of K+ and SCN in the methanol−water mixtures was verified by the application of the Kirkwood−Buff theory of solutions. This theory confirms that K+ is strongly preferentially solvated by water, whereas SCN is preferentially solvated by the methanol component.  相似文献   
204.
Ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid was theoretically investigated with DFT and MP4(SDQ) methods, where a real catalyst, cis-Ru(H)2(PMe3)3, was employed in calculations and compared with a model catalyst, cis-Ru(H)2(PH3)3. Significant differences between the real and model systems are observed in CO2 insertion into the Ru(II)-H bond, isomerization of a ruthenium(II) eta1-formate intermediate, and metathesis of the eta1-formate intermediate with a dihydrogen molecule. All these reactions more easily occur in the real system than in the model system. The differences are interpreted in terms that PMe3 is more donating than PH3 and the trans-influence of PMe3 is stronger than that of PH3. The rate-determining step is the CO2 insertion into the Ru(II)-H bond. Its deltaG(o++) value is 16.8 (6.8) kcal/mol, where the value without parentheses is calculated with the MP4(SDQ) method and that in parentheses is calculated with the DFT method. Because this insertion is considerably endothermic, the coordination of the dihydrogen molecule with the ruthenium(II)-eta1-formate intermediate must necessarily occur to suppress the deinsertion. This means that the reaction rate increases with increase in the pressure of dihydrogen molecule, which is consistent with the experimental results. Solvent effects were investigated with the DPCM method. The activation barrier and reaction energy of the CO2 insertion reaction moderately decrease in the order gas phase > n-heptane > THF, while the activation barrier of the metathesis considerably increases in the order gas phase < n-heptane < THF. Thus, a polar solvent should be used because the insertion reaction is the rate-determining step.  相似文献   
205.
Summary. The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   
206.
The first silver(I) complex of saccharinate (sac) with pyridine (py), [Ag(sac)(py)]n has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffractometry. The complex crystallizes in chiral, trigonal space group P3121 (No. 152) with unit cell parameters of a = 11.2605(2) Å, c = 17.3300(4) Å, V = 1903.02(6) Å3 and Z = 6. [Ag(sac)(py)]n contains monomeric [Ag(sac)(py)] units linked into infinite helices by way of Ag⋅sAg interactions [d(Ag⋅sAg) = 2.909(2) and 2.985(1) Å]. The distorted square-planar environment of Ag is completed by an N-bonded sac [Ag—N = 2.084(2) Å] and a py molecule [Ag—N = 2.116(2) Å]. The Nsac—Ag—Npy angle is 173.85(10). The one-dimensional chains are crosslinked by C—H⋅sO interactions involving the carbonyl and sulfonyl O atoms of sac and aromatic-ring hydrogen atoms of both sac and py. The thermal stability of the title complex was investigated using thermogravimetry and differential thermal analysis in a static atmosphere of air. The first decomposition stage between 90 and 160C corresponds to removal of the py molecule in a single stage, while the degradation of the sac moiety occurs at two stages in the temperature range 370–515C, giving an end product of metallic Ag.  相似文献   
207.
An enzymatic assay for glucose based on the use of the fluorescent probe for hydrogen peroxide, europium(III) tetracycline (EuTc), is described. The weakly fluorescent EuTc and enzymatically generated H2O2 form a strongly fluorescent complex (EuTc–H2O2) whose fluorescence decay profile is significantly different. Since the decay time of EuTc–H2O2 is in the microseconds time domain, fluorescence can be detected in the time-resolved mode, thus enabling substantial reduction of background fluorescence. The scheme represents the first H2O2-based time-resolved fluorescence assay for glucose not requiring the presence of a peroxidase. The time-resolved assay (with a delay time of 60 s and using endpoint detection) enables glucose to be determined at levels as low as 2.2 mol L–1, with a dynamic range of 2.2–100 mol L–1. The method also was adapted to a kinetic assay in order to cover higher glucose levels (mmol L–1 range). The latter was validated by analyzing spiked serum samples and gave a good linear relationship for glucose levels from 2.5 to 55.5 mmol L–1. Noteworthy features of the assay include easy accessibility of the probe, large Stokes shift, a line-like fluorescence peaking at 616 nm, stability towards oxygen, a working pH of approximately 7, and its suitability for both kinetic and endpoint determination.  相似文献   
208.
The apparent molar volumes, V,2, of glycine, L-alanine, DL--amino-n-butyric acid, L-valine, and L-leucine have been determined in aqueous 0.25, 0.75, 1.0, and 1.5 mol-dm–3 tetraethylammonium bromide (TEAB) solutions by density measurements at 298.15 K. These data have been used to calculate the infinite dilution apparent molar volumes, V2,m, for the amino acids in aqueous tetraethylammonium bromide and the standard partial molar volumes of transfer (tr V2,m) of the amino acids from water to the aqueous salt solutions. The linear correlation of V2,m for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group, and other alkyl chains of the amino acids to V2,m. The results of the standard partial molar volumes of transfer from water to aqueous tetraethylammonium bromide have been interpreted in terms of ion–ion, ion–polar, and hydrophobic–hydrophobic group interactions. The volume of transfer data suggest that ion–ion or ion–hydrophilic interactions are predominant in the case of glycine and alanine, and hydrophobic–hydrophobic group interactions are predominant in the case of DL--amino butyric acid, L-valine, and L-leucine.  相似文献   
209.
A novel type of heterogenized CuCl2 catalysts was designed for the oxidative carbonylation of methanol to dimethyl carbonate (DMC) taking account of the plausible reaction mechanism and intermediates. To prevent severe corrosion of the reaction equipment materials due to Cl while keeping the catalytic activity of the homogeneous CuCl2 catalyst, we adopted, as supports (or ligands) of CuCl2, four polymers, bearing a 2,2-bipyridine (bpy) or pyridine (py) unit, namely, poly(2,2-bipyridine-5,5-diyl) (Pbpy), poly(pyridine-2,5-diyl) (Ppy), poly(N,N-bisphenylene-2,2-bipyridine-4,4-dicarboxylic amide) (Bpya), and poly(4-methyl-4-vinyl-2,2-bipyridine) (Pvbpy), together with one chelate compound, 8-quinolinol. The catalytic activity, stability of heterogenized CuCl2 and their corrosivities to stainless steels were examined in the liquid-phase reaction of the oxidative carbonylation of methanol. These polymer-supported catalysts showed considerable catalytic activity and stability for the DMC synthesis. In particular, the Pbpy-CuCl2 and Ppy-CuCl2 catalysts exhibited high DMC yields and selectivity comparable to those of the homogeneous CuCl2 catalyst. This high activity appears to be associated with the presence of the -conjugated system in the polymers, which affect the redox reactions of Cu involved in the catalytic reaction. All of the polymer-supported CuCl2 catalysts could be easily recycled after filtration, and the initial catalytic activity was maintained after three times of use. The corrosive characters of the catalysts were closely related to CuCl2 leaching from the supports, which reflects the ability of supports to coordinate Cu. These experimental results suggest that both the electronic structure and the coordination ability of the polymer supports are key factors for the development of an effective catalytic system.  相似文献   
210.
A series of triorganotin hydrides and diorganotin dihydrides containing the optically active 2-(4-isopropyl-2-oxazolinyl)-5-phenyl ligand have been characterized by means of the multinuclear low-temperature NMR investigations, the results of which are discussed. In the corresponding organotin hydrides values of the 1J(1H-117/119Sn) couplings appeared to be temperature dependent, supporting an axial/equatorial position of the hydrogen attached to the tin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号