首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1326篇
  免费   46篇
  国内免费   14篇
化学   1046篇
晶体学   9篇
力学   11篇
数学   101篇
物理学   219篇
  2023年   6篇
  2022年   11篇
  2021年   17篇
  2020年   4篇
  2019年   29篇
  2018年   20篇
  2017年   6篇
  2016年   19篇
  2015年   38篇
  2014年   33篇
  2013年   95篇
  2012年   89篇
  2011年   90篇
  2010年   56篇
  2009年   56篇
  2008年   90篇
  2007年   99篇
  2006年   98篇
  2005年   88篇
  2004年   78篇
  2003年   53篇
  2002年   62篇
  2001年   13篇
  2000年   20篇
  1999年   12篇
  1998年   9篇
  1997年   10篇
  1996年   19篇
  1995年   3篇
  1994年   4篇
  1993年   11篇
  1992年   7篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   17篇
  1984年   10篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   9篇
  1979年   3篇
  1978年   6篇
  1977年   9篇
  1976年   5篇
  1975年   5篇
  1973年   9篇
排序方式: 共有1386条查询结果,搜索用时 0 毫秒
41.
Sensitive, reactive, and hydrophilic fluorogenic reagents for thiols with the benzofurazan skeleton, 4-(N-acetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (AcABD-F) and 4-(N-trichloroacetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (TCAcABD-F) have been developed. These reagents reacted with thiols within 10 min at 60 degrees C. AcABD-F and TCAcABD-F themselves do not fluoresce but are strongly fluorescent after the reaction with thiol compounds. The generated derivatives were highly water-soluble, since they dissociated a proton and ionized in the neutral pH region. The derivatives with four biologically important thiol compounds were separated on a reversed-phase HPLC column and detected fluorometrically at 504 nm with excitation at 388 nm. The detection limit attained for homocysteine with AcABD-F was 25 fmol on column (11 nM) (signal-to-noise ratio = 3), and that for glutathione with TCAcABD-F was 45 fmol on column (20 nM).  相似文献   
42.
A method was developed for determination of total dietary fiber (TDF) in foods containing resistant maltodextrin (RMD) which includes nondigestible carbohydrates that are not fully recovered as dietary fiber by conventional TDF methods such as AOAC 985.29 or 991.43. Because the average molecular weight (MW) of RMD is 2000 daltons, lower MW soluble dietary fiber components do not precipitate in 78% ethanol; therefore, RMD is not completely quantitated as dietary fiber by current AOAC methods. The accuracy and precision of the method was evaluated through an AOAC collaborative study. Ten laboratories participated and assayed 12 test portions (6 blind duplicates) containing RMD. The 6 test pairs ranged from 1.5 to 100% RMD. The method consisted of the following steps: (1) The insoluble dietary fiber (IDF) and high MW soluble dietary fiber (HMWSDF) were determined by AOAC 985.29. (2) Ion exchange resins were used to remove salts and proteins contained in the AOAC 985.29 filtrates (including ethanol and acetone). (3) The amount of low MWRMD (LMWRMD) in the filtrates were determined by liquid chromatography. (4) The TDF was calculated by summation of the IDF, HMWSDF, and LMWRMD fractions having nondigestible carbohydrates with a degree of polymerization of 3 and higher. Repeatability standard deviations (RSDr) were 1.33-7.46%, calculated by including outliers, and 1.33-6.10%, calculated by not including outliers. Reproducibility standard deviations (RSDR) were 2.48-9.39%, calculated by including outliers, and 1.79-9.39%, calculated by not including outliers. This method is recommended for adoption as Official First Action.  相似文献   
43.
44.
45.
46.
The positron annihilation lifetime (PAL) of a series of copolyimides and copolyamides with microphase‐separated structures was measured to investigate the effects of different hard‐segment polymers on the PAL properties of soft‐segment domains of poly(dimethyl‐siloxane) (PDMS) and poly(ethylene oxide) (PEO). The lifetime (τ3) and intensity (I3) of the long‐lived component are given as a function of the PDMS or PEO content for a series of copolymers, of which the density roughly obeys the additive rule except for the PDMS‐segmented copolyamides. The PDMS‐segmented copolyimides and copolyamides show much smaller I3 values than those estimated from the additive rule. The lifetime distribution of the long‐lived component for the PDMS‐segmented copolyamides is composed of two components. The longer‐lifetime component is attributed to pure PDMS domains, and the shorter‐lifetime component is attributed to the polyamide domains, intermediate phases, and PDMS domains containing small amounts of short amide blocks. Despite the high PDMS content, the latter component is rather large. Thus, the positronium formation in the PDMS domains of the copolyimides and copolyamides is effectively reduced. This can be explained by the combination of the difference in the electron affinity of the PDMS and polyimide or polyamide segments and the incomplete phase separation. The PEO‐segmented copolyimides show much smaller I3 values than those predicted from the additive rule. This is likely attributable to the effects of the intermediate phases. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1123–1132, 2000  相似文献   
47.
Pd(II)-SPRIX catalyst coupled with an environmentally benign molecular oxygen as the sole oxidant successfully exploited the construction of pyrrolizines/pyrroloindoles, imperative scaffolds of bio-potent molecules through intramolecular C-N and C-C bond forming reactions in good yields with appreciable enantioselectivities.  相似文献   
48.
Highly active NiFeOx electrocatalysts for the oxygen evolution reaction (OER) suffer gradual deactivation with time owing to the loss of Fe species from the active sites into solution during catalysis. The anodic deposition of a CeOx layer prevents the loss of such Fe species from the OER catalysts, achieving a highly stable performance. The CeOx layer does not affect the OER activity of the catalyst underneath but exhibits unique permselectivity, allowing the permeation of OH? and O2 through while preventing the diffusion of redox ions through the layer to function as a selective O2‐evolving electrode. The use of such a permselective protective layer provides a new strategy for improving the durability of electrocatalysts.  相似文献   
49.
Visible light-responsive TiO2 (Vis-TiO2) thin films able to absorb UV and visible light in wavelength regions of 250–600 nm were successfully developed by applying a radio-frequency magnetron sputtering deposition method. These Vis-TiO2 thin films exhibited high activity for the photocatalytic oxidation of 2-propanol diluted in water even under visible light irradiation (λ ≥ 450 nm). The photocatalytic activity of Vis-TiO2 thin films was dramatically enhanced by the deposition of Pt particles on the surface. Secondary ion mass spectrometry measurements revealed that Pt particles are distributed from the top surface to the deep bulk of Vis-TiO2 thin films with a columnar structure. The unique columnar structure of Vis-TiO2 thin films plays an important role in the high photocatalytic performance.  相似文献   
50.
We previously reported that an Fe(II) complex ligated by two (Z)-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine ligands (Z-H) presented a solid state ligand-driven light-induced spin change (LD-LISC) upon one-way Z-to-E photoisomerization, although modulation of the magnetism was trivial at ambient temperatures (Chem. Commun.2011, 47, 6846). Here, we report the synthesis of new derivatives of Z-H, Z-CN and Z-NO(2), in which electron-withdrawing cyano and nitro substituents are introduced at the 4-position of the styryl group to attain a more profound photomagnetism at ambient temperatures. Z-CN and Z-NO(2) undergo quantitative one-way Z-to-E photochromism upon excitation of the charge transfer band both in acetonitrile and in the solid state, similar to the behavior observed for Z-H. In solution, these substituents stabilized the low-spin (LS) states of Z-CN and Z-NO(2), and the behavior was quantitatively analyzed according to the Evans equation. The photomagnetic properties in the solid state, on the other hand, cannot be explained in terms of the substituent effect alone. Z-CN displayed photomagnetic properties almost identical to those of Z-H. Z-CN preferred the high-spin (HS) state at all temperatures tested, whereas photoirradiated Z-CN yielded a lower χ(M)T at ambient temperatures. The behavior of Z-NO(2) was counterintuitive, and the material displayed surprising photomagnetic properties in the solid state. Z-NO(2) occupied the LS state at low temperatures and underwent thermal spin crossover (SCO) with a T(1/2) of about 270 K. The photoirradiated Z-NO(2) displayed a higher value of χ(M)T and the modulation of χ(M)T exceeded that of Z-H or Z-CN. Z-NO(2)·acetone, in which acetone molecules were incorporated into the crystal lattice, further stabilized the LS state (T(1/2) > 300 K), thereby promoting large modulations of the χ(M)T values (87% at 273 K and 64% at 300 K) upon Z-to-E photoisomerization. Single crystal X-ray structure analysis revealed that structural factors played a vital role in the photomagnetic properties in the solid state. Z-H and Z-CN favored intermolecular π-π stacking among the ligand molecules. The coordination sphere around the Fe(II) nucleus was distorted, which stabilized the HS state. In contrast, Z-NO(2)·acetone was liberated from such intermolecular π-π stacking and coordination distortion, resulting in the stabilization of the LS state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号