首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   2篇
  国内免费   1篇
化学   136篇
晶体学   1篇
力学   4篇
数学   4篇
物理学   33篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   10篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   19篇
  2007年   11篇
  2006年   14篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1998年   2篇
  1997年   3篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
171.
Information on the higher-order structure is important in the development of biopharmaceutical drugs. Recently, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) has been widely used as a tool to evaluate protein conformation, and unique automated systems for HDX-MS are now commercially available. To investigate the potential of this technique for the prediction of the activity of biopharmaceuticals, granulocyte colony stimulating factor (G-CSF), which had been subjected to three different stress types, was analyzed using HDX-MS and through comparison with receptor-binding activity. It was found that HDX-MS, in combination with ion mobility separation, was able to identify conformational changes in G-CSF induced by stress, and a good correlation with the receptor-binding activity was demonstrated, which cannot be completely determined by conventional peptide mapping alone. The direct evaluation of biological activity using bioassay is absolutely imperative in biopharmaceutical development, but HDX-MS can provide the alternative information in a short time on the extent and location of the structural damage caused by stresses. Furthermore, the present study suggests the possibility of this system being a versatile evaluation method for the preservation stability of biopharmaceuticals. Graphical Abstract
?  相似文献   
172.
Ab initio MO calculations were carried out, at the MP2/6-311++G(d,p)//MP2/6-311G(d,p) level, to investigate the Gibbs free energy of the conformational isomers of 2-alkyl, 3-alkyl, and 4-alkyl cyclohexanones. The calculation gave results consistent with the general trend experimentally found. The genesis of stabilization of the axial conformers in 2- and 3-alkyl cyclohexanones, as compared to the structurally corresponding cyclohexane derivatives, was sought in the context of the attractive CH/π(CO) hydrogen bond. In support of this hypothesis, short nonbonded distances have been noted between CHs in the alkyl group and the carbonyl carbon in the relevant axial conformers. Calculations were also carried out to study the conformational energies of several terpenic ketones. For isomenthone, more than a half molecular fraction (ca. 55%) has been suggested to be in the isopropyl-axial conformation, while for isocarvomenthone ca. 77% has been suggested to be in the axial-isopropyl conformation; this is consistent with bibliographic experimental data. A crystallographic database search has provided results compatible with this conclusion. We suggest that the relative stability of the axial alkyl substituent, often observed in terpenic and steroidal ketones is rationalized in terms of an attractive molecular force, the CH/π(CO) hydrogen bond.  相似文献   
173.
A high‐quality bulk gallium nitride (GaN) substrate, which is suitable for high‐quality homoepitaxial growth, is indispensable for realizing high‐performance GaN devices. With improvement in the quality of the bulk GaN substrate, the removal of subsurface damage induced during surface polishing has become increasingly necessary. To remove the subsurface damage from the bulk GaN substrate, a chemical finishing method that does not produce further damage is required. We applied plasma chemical vaporization machining (CVM) to remove the subsurface damage from the bulk GaN substrate. In this study, we investigated the etching characteristics of GaN by plasma CVM applying atmospheric pressure Cl2/He plasma. The maximum removal rate in the depth direction by plasma CVM was 9100 nm/min, which is seven times greater than that of reactive ion etching (RIE). The activation energy in plasma CVM was estimated to be 2.1 kcal/mol, which is 1.75 times greater than that in RIE. It is supposed that some of the energy required for the removal reaction in RIE is supplied by ion bombardment, but plasma CVM depends on only a chemical reaction without high‐energy ion collision. This result suggests that plasma CVM is a finishing method that causes less subsurface damage than RIE. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
174.
175.
Fullerene-containing liposomes with high photosensitization ability were prepared. Disaggregated fullerenes were efficiently injected into the bilayer of liposomes by a phototriggered molecular exchange reaction. These liposomes showed far higher photoreactivity than liposomes thermally produced by heating and microwave irradiation. This result indicates that control of self-aggregation of fullerene leads to a high quantum yield for the photoreaction because of the suppression of self-quenching of photoexcited fullerenes.  相似文献   
176.
A wide range of vibrational levels of O2(X(3)Sigma(g)(-), v = 6-13) generated in the ultraviolet photolysis of O3 was selectively detected by the laser-induced fluorescence (LIF) technique. The time-resolved LIF-excited B(3)Sigma(u)(-)-X(3)Sigma(g)(-) system in the presence of CF4 has been recorded and analyzed by the integrated profiles method (IPM). The IPM permitted us to determine the rate coefficients k(v)(CF4) for vibrational relaxation of O2(X(3)Sigma(g)(-), v = 6-12) by collisions with CF4. Energy transfer from O2 (v = 6-12) to CF4 is surprisingly efficient compared to that of other polyatomic relaxation partners studied so far. The k(v)(CF4) increases with vibrational quantum number v from [1.5 +/- 0.2(2sigma)] x 10(-12) for v = 6 to [7.3 +/- 1.5(2sigma)] x 10(-11) for v = 12, indicating that the infrared-active nu3 vibrational mode of CF4 mainly governs the energy transfer with O2(X(3)Sigma(g)(-), v = 6-12). The correlation between the rate coefficients and fundamental infrared intensities has been discussed based on a comparison of the efficiency of energy transfer by several collision partners.  相似文献   
177.
Photoelectrochemical cells based on oxotitanylphthalocyanine (TiOPc) films and an I(3)(-)/I(-) redox couple have been constructed. The TiOPc films were prepared on an indium-tin oxide coated glass plate (ITO) by the micellar disruption method and characterized by their unique nanoporous structure. A photocurrent action spectrum for input radiation directed through the ITO/TiOPc film, film-thickness dependence, and morphological investigation revealed that the cells consisted of a bulk heterojunction formed between the nanoporous TiOPc films and the liquid I3-/I- electrolyte, resulting in a larger short-circuit current (J(sc)= 2.1 mA/cm(2)), open-circuit voltage (V(oc)= 0.11 V), fill factor (ff= 0.31), and hence a larger energy conversion efficiency (eta= 0.13% for an incident white-light intensity of 53 mW/cm2) than the bilayer structure composed of the vaccum-evaporated TiOPc compact film and the I(3)(-)/I(-) electrolyte (J(sc)= 0.16 mA/cm(2), V(oc)= 0.018 V, ff = 0.27, and eta = (1.5 x 10(-3)%).  相似文献   
178.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号