首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   29篇
  国内免费   4篇
化学   636篇
晶体学   3篇
力学   12篇
数学   52篇
物理学   179篇
  2021年   4篇
  2020年   7篇
  2019年   16篇
  2018年   11篇
  2017年   4篇
  2016年   13篇
  2015年   12篇
  2014年   22篇
  2013年   31篇
  2012年   29篇
  2011年   47篇
  2010年   22篇
  2009年   30篇
  2008年   40篇
  2007年   62篇
  2006年   32篇
  2005年   42篇
  2004年   46篇
  2003年   36篇
  2002年   25篇
  2001年   21篇
  2000年   18篇
  1999年   12篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   11篇
  1994年   8篇
  1993年   9篇
  1992年   12篇
  1991年   11篇
  1990年   16篇
  1989年   12篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   22篇
  1984年   15篇
  1983年   8篇
  1982年   12篇
  1981年   10篇
  1980年   8篇
  1979年   12篇
  1978年   9篇
  1977年   4篇
  1976年   15篇
  1975年   17篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
排序方式: 共有882条查询结果,搜索用时 187 毫秒
111.
We prove time local existence and uniqueness of solutions to a boundary layer problem in a rotating frame around the stationary solution called the Ekman spiral. We choose initial data in the vector-valued homogeneous Besov space for 2 <  p <  ∞. Here the L p -integrability is imposed in the normal direction, while we may have no decay in tangential components, since the Besov space contains nondecaying functions such as almost periodic functions. A crucial ingredient is theory for vector-valued homogeneous Besov spaces. For instance we provide and apply an operator-valued bounded H -calculus for the Laplacian in for a general Banach space .  相似文献   
112.
3,10-Dipyrrolidinyl-4,9-methanothia[11]annulene reacts with excess dimethyl acetylenedicarboxylate (DMAD) in refluxing toluene to give ring-enlarged 6,11-methanothia[15]annulene. X-ray crystallographic analysis of the product shows two different cis,trans-dienyl parts in the ring system. Product formation possibly involves π-facial selective addition of the enamine with DMAD and torque-selective ring opening of the intermediate cyclobutenes.  相似文献   
113.
Regenerative medicine for repairing damaged body tissues has recently become critically important. Cell culture scaffolds are required for the control of cell attachment, proliferation, and differentiation in in vitro cell cultures. A new strategy to control cell adhesion, morphology, and proliferation was developed by culturing mouse osteoblast-like MC3T3-E1 cells on novel cell culture scaffolds fabricated using ordered nanometer-sized pores (100, 300, 500, and 1000 nm). Results of this study indicate that after 72 h of incubation, the number of cells cultured on a silica film with a pore size of 1000 nm was similar to or slightly lower than that cultured on a non-porous control silica film. Films with 100-500 nm pore sizes, however, resulted in the cell growth inhibition. Morphology of the cultured cells revealed increased elongation and the formation of actin stress fibers was virtually absent on macroporous silica films with 100-500 nm pore size. Vinculin molecules expressed in cells cultured on the non-porous silica films showed many clear focal adhesions, whereas focal contacts were insufficiently formed in cells cultured on macroporous films. The influence of hydroxyapatite (HAp) and alumina scaffolds on the behavior of MC3T3-E1 cells was also evaluated. The proliferation rate of MC3T3-E1 cells cultured on HAp films with 1000 nm pore size was increased to approximately 20% above than that obtained of cells cultured on non-porous HAp films. These results demonstrate that the pore size and constituents of films play a role in controlling the morphology and proliferation rate of MC3T3-E1 cells.  相似文献   
114.
This paper describes the preparation of iron oxide nanoparticles, surface of which was coated with extremely high immobilization stability and relatively higher density of poly(ethylene glycol) (PEG), which are referred to as PEG protected iron oxide nanoparticles (PEG-PIONs). The PEG-PIONs were obtained through alkali coprecipitation of iron salts in the presence of the PEG-poly(4-vinylbenzylphosphonate) block copolymer (PEG-b-PVBP). In this system, PEG-b-PVBP served as a surface coating that was bound to the iron oxide surface via multipoint anchoring of the phosphonate groups in the PVBP segment of PEG-b-PVBP. The binding of PEG-b-PVBP onto the iron oxide nanoparticle surface and the subsequent formation of a PEG brush layer were proved by FT-IR, zeta potential, and thermogravimetric measurements. The surface PEG-chain density of the PEG-PIONs varied depending on the [PEG-b-PVBP]/[iron salts] feed-weight ratio in the coprecipitation reaction. PEG-PIONs prepared at an optimal feed-weight ratio in this study showed a high surface PEG-chain surface density (≈0.8 chainsnm(-2)) and small hydrodynamic diameter (<50 nm). Furthermore, these PEG-PIONs could be dispersed in phosphate-buffered saline (PBS) that contains 10% serum without any change in their hydrodynamic diameters over a period of one week, indicating that PEG-PIONs would provide high dispersion stability under in vivo physiological conditions as well as excellent anti-biofouling properties. In fact we have confirmed the prolong blood circulation time and facilitate tumor accumulation (more than 15% IDg(-1) tumor) of PEG-PIONs without the aid of any target ligand in mouse tumor models. The majority of the PEG-PIONs accumulated in the tumor by 96 h after administration, whereas those in normal tissues were smoothly eliminated by 96 h, proving the enhancement of tumor selectivity in the PEG-PION localization. The results obtained here strongly suggest that originally synthesized PEG-b-PVBP, having multipoint anchoring character by the phosphonate groups, is rational design for improvement in nanoparticle as in vivo application. Two major points, viz., extremely stable anchoring character and dense PEG chains tethered on the nanoparticle surface, worked simultaneously to become PEG-PIONs as an ideal biomedical devices intact for prolonged periods in harsh biological environments.  相似文献   
115.
A surface plasmon resonance (SPR) biosensor that carries DNA-binding small ligands has been developed for the detection of single-nucleotide polymorphisms (SNPs). 3,5-Diaminopyrazine derivatives, with a hydrogen-bonding profile fully complementary to the thymine base, were utilized as recognition elements on the sensor surface, and a target single-stranded DNA sequence was hybridized with a DNA probe containing an abasic site to place this site opposite a nucleobase to be detected. In a continuous flow of sample solutions buffered to pH 6.4 (0.25 M NaCl), the 3,5-diaminopyrazine-based SPR sensor can detect an orphan nucleobase in the duplex with a clear selectivity for thymine over cytosine, guanine, and adenine (5'-GTT GGA GCT GXG GGC GTA GGC-3'/3'-CAA CCT CGA CNC CCG CAT CCG-5'; X=abasic site, N=target nucleobase G, C, A, or T). The SPR response was linear in the concentration range 10-100 nM. Allele discrimination is possible based on the combination of different binding surfaces in a flow cell of the SPR system, which is demonstrated for the analysis of the thymine/cytosine mutation present in 63-meric polymerase chain reaction (PCR) amplification products (Ha-ras gene, codon 12, antisense strand). Comparison with a bulk assay based on 3,5-diaminopyrazine/DNA binding shows that the immobilization of 3,5-diaminopyrazine derivatives on the SPR sensor allows more sensitive detection of the target DNA sequence, and binding selectivity can be tuned by controlling the salt concentration of sample solutions. These features of the DNA-binding small-molecule-immobilized SPR sensor are discussed as a basis for the design of SPR biosensors for SNP genotyping.  相似文献   
116.
Arginine-rich peptide and Antennapedia are cell-penetrating peptides (CPPs) which have the ability to permeate plasma membrane. Deformation of the plasma membrane with CPPs is the key to understand permeation mechanism. We investigate the dynamics of CPP and the lipid bilayer membrane by coarse-grained simulation. We found that the peptide makes inverted micelle in the lipid bilayer membrane, when the attractive potential between the peptide and lipid heads is strong. The inverted micelle is formed to minimize potential energy of the peptide. For vesicle membrane, the peptide moves from the outer vesicle to the inner vesicle through the membrane. The translocation of the peptide suggests inverted micelle model as a possible mechanism of CPPs.  相似文献   
117.
A Rh-doped SrTiO(3) (SrTiO(3):Rh) photocatalyst electrode that was readily prepared by pasting SrTiO(3):Rh powder onto a transparent indium tin oxide electrode gave a cathodic photocurrent under visible-light irradiation (λ > 420 nm), indicating that the SrTiO(3):Rh photocatalyst electrode possessed p-type semiconductor character. The cathodic photocurrent increased with an increase in the amount of doped Rh up to 7 atom %. The incident-photon-to-current efficiency at 420 nm was 0.18% under an applied potential of -0.7 V vs Ag/AgCl for the SrTiO(3):Rh(7 atom %) photocatalyst electrode. The photocurrent was confirmed to be due to water splitting by analyzing the evolved H(2) and O(2). The water splitting proceeded with the application of an external bias smaller than 1.23 V versus a Pt counter electrode under visible-light irradiation and also using a solar simulator, suggesting that solar energy conversion should be possible with the present photoelectrochemical water splitting.  相似文献   
118.
The blockade of human ether-a-go-go-related gene (hERG) potassium channels is widely regarded as the predominant cause of drug-induced QT prolongation. The correlation analysis between the inhibition of the hERG channel (hERG inhibition) and physicochemical properties was investigated by use of in-house quinolone antibiotics as model compounds. In order to establish a simple prediction model of hERG inhibition, we focused on the comprehensible physicochemical parameters such as lipophilicity (log P) and basicity (pK(a)). At first, the risk associated with increasing log P and pK(a) was examined by statistical analysis. It was demonstrated that the risk associated with increasing log P and pK(a) by one unit, respectively, almost identically increased. Consequently, equal attention should be paid to both parameters on hERG inhibition. Next, a prediction model of hERG inhibition which was represented by log P and pK(a) was investigated. As a result, we built the stepwise discriminant prediction model which took advantage of the risk judgment by zone classification. In conclusion, the impact of log P and pK(a) on hERG inhibition was clarified relatively and quantitatively. The quantitative risk assessment established based on both parameters, was considered to be a practical and useful tool in avoiding hERG inhibition and in the rational drug design for drug discovery, especially in lead optimization. Moreover, we also carried out a trend analysis using a different derivative and demonstrated that both parameters were equally significant for hERG inhibition.  相似文献   
119.
Alkyl- and perfluoro-phosphonic acid derived SAMs were successfully formed on Mg alloy by liquid phase method for the first time. The chemical and anticorrosive properties of the prepared SAMs on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrochemical measurements. Water contact angle measurements revealed that the maximum advancing/receding water contact angles of n-octyl (OP: CH(3)(CH(2))(7)PO(OH)(2)), n-dodecyl (DP: CH(3)(CH(2))(11)PO(OH)(2)), n-octadecyl (ODP: CH(3)(CH(2))(17)PO(OH)(2)) phosphonic acid, and 2-(perfluorohexyl)ethyl (PFEP: CF(3)(CF(2))(5)CH(2)CH(2)PO(OH)(2)) phosphonic acid were 105.1/64.7°, 108.3/69.6°, 111.9/75.2°, and 115.2/67.4° respectively. In the case of alkylphosphonic acid SAMs (OP, DP, and ODP), the advancing and receding water contact angles increased with an increase in the preparation time. The angle-resolved XPS (AR-XPS) data revealed that the film thicknesses of the OP, DP, ODP, PFEP on Mg alloy were estimated to be 0.8, 1.2, 1.7, and 1.1 nm, respectively. The XPS O 1s data support that the phosphonic acid derived SAM is covalently bound to the oxide or hydroxide surface of the Mg alloy in a monodenate or bidenate manner. Chemical stability of the alkyl- and perfluoro-phosphonic acid modified Mg alloy surfaces was investigated using aqueous solutions at pH=4.0, 7.0, and 10.0. The contact angles of OP, DP, and PFEP modified Mg surface decreased rapidly within the first 5 min after immersion in all the aqueous solutions and were less than 20°. On the other hand, the contact angles of the ODP modified Mg alloy after immersion in aqueous solutions at pH 4, 7 and 10 for 5 min were 45.1°, 89.3,° and 85.5°, respectively. The ODP modified Mg alloy had highest chemical stability in four types of the phosphonic acid derived SAMs used in this study, indicating that the molecular density of ODP on Mg alloy would be higher than those of OP, DP, PFEP on Mg alloy. The corrosion resistance of ODP modified Mg alloy was investigated by potentiodynamic polarization curve measurements. The ODP modified Mg alloy exhibits protective properties in a solution containing Cl(-) ions compared to unmodified Mg alloy.  相似文献   
120.
The rotational-state-selected CH (v = 0, J, F(i)) beam has been prepared by using an electric hexapole and applied to the crossed beam reaction of CH (v = 0, J, F(i)) + O(2) → OH (A) + CO at different O(2) beam conditions. The rotational state selected reactive cross sections of CH (RSSRCS-CH) turn out to depend remarkably on the rotational state distribution of O(2) molecules at a collision energy of ~?0.19 eV. The reactivity of CH molecules in the N = 1 rotational states (namely ∣J = 1∕2, F(2)> and ∣J = 3∕2, F(1)> states, N designates the angular momentum excluding spin) becomes strongly enhanced upon a lowering of the rotational temperature of the O(2) beam. The RSSRCS-CH in these two rotational states correlate linearly with the population of O(2) molecule in the specific K(O(2)) frame rotation number states: CH(|J = 1/2,F(2)>) with O(2)(|K(O(2)) = 1>);CH(|J = 3/2,F(1)>) with O(2)(|K(O(2)) = 3>). These linear correlations mean that the rotational-state-selected CH molecules are selectively reactive upon the incoming O(2) molecules in a specific rotational state; here, we use the term "rotationally correlated reactivity" to such specific reactivity depending on the combination of the rotational states between two molecular reactants. In addition, the steric asymmetry in the oriented CH (∣J = 1∕2,?F(2),?M = 1∕2>) + O(2) (|K(O(2)) = 1>) reaction turns out to be negligible (< ±1%). This observation supports the reaction mechanism as theoretically predicted by Huang et al. [J. Phys. Chem. A 106, 5490 (2002)] that the first step is an intermediate formation with no energy barrier in which C-atom of CH molecule attacks on one O-atom of O(2) molecule at a sideways configuration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号