首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2055篇
  免费   73篇
  国内免费   9篇
化学   1577篇
晶体学   31篇
力学   18篇
数学   112篇
物理学   399篇
  2022年   17篇
  2021年   15篇
  2020年   34篇
  2019年   31篇
  2018年   23篇
  2017年   8篇
  2016年   40篇
  2015年   40篇
  2014年   53篇
  2013年   124篇
  2012年   94篇
  2011年   133篇
  2010年   60篇
  2009年   61篇
  2008年   104篇
  2007年   121篇
  2006年   118篇
  2005年   98篇
  2004年   86篇
  2003年   85篇
  2002年   70篇
  2001年   45篇
  2000年   26篇
  1999年   35篇
  1998年   21篇
  1997年   36篇
  1996年   21篇
  1995年   25篇
  1994年   23篇
  1993年   26篇
  1992年   20篇
  1991年   19篇
  1990年   24篇
  1989年   25篇
  1988年   26篇
  1987年   19篇
  1986年   20篇
  1985年   29篇
  1984年   23篇
  1983年   22篇
  1982年   22篇
  1981年   23篇
  1980年   23篇
  1979年   18篇
  1978年   26篇
  1977年   17篇
  1976年   15篇
  1975年   19篇
  1974年   13篇
  1973年   24篇
排序方式: 共有2137条查询结果,搜索用时 15 毫秒
101.
Heterometallic linear tetramers [Mn(5-R-saltmen)Ni(pao)(bpy)(2)](2)(ClO(4))(4) (5-R-saltmen(2-) = N,N'-1,1,2,2-tetramethylethylene bis(5-R-salicylideneiminate); pao(-) = pyridine-2-aldoximate; bpy = 2,2'-bipyridine, R = H, 1; Cl, 2; Br, 3; MeO, 4) have been synthesized and structurally characterized. These compounds exhibit a [Ni(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-Ni(II)] skeleton where -ON- is an oximate bridge between Mn(III) and Ni(II) ions and -(O)(2)- is a bi-phenolate bridge between Mn(III) ions. These tetramers can be seen as oligomeric units of the heterometallic Mn(III)(2)-Ni(II) chain observed in a family of single-chain magnets (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. Miyasaka, H.; Clérac, R.; Mizushima, K.; Sugiura, K.; Yamashita, M.; Wernsdorfer, W.; Coulon, C. Inorg. Chem. 2003, 42, 8203.). Magnetic measurements on these tetramers confirm the nature of the magnetic interactions reported for the Mn(III)(2)-Ni(II) chains: a strong antiferromagnetic Mn(III)/Ni(II) coupling via the oximate bridge (J(Ni-Mn) ranges from -23.7 to -26.1 K) and a weak ferromagnetic Mn(III)/Mn(III) coupling through the bi-phenolate bridge (J(Mn-Mn) ranges from +0.4 to +0.9 K). These magnetic interactions lead to tetramers with an S = 2 ground state.  相似文献   
102.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   
103.
The high symmetry and resulting electronic degeneracy of the C(60)(3)(-) anion is viewed as the key molecular feature in the high superconducting transition temperatures of fulleride and oxidized fullerene systems. The experimental evaluation of this hypothesis requires the synthesis of face-centered cubic (fcc) trivalent fulleride anion salts derived from higher fullerenes such as C(70), which have thus far proved elusive with only stable A(1)C(70), A(4)C(70), and A(6)C(70) phases known. In this paper, we report the synthesis of fcc A(3)C(70) phases stabilized by size-matching the tetrahedral site with the sodium cation. The structures are strongly dependent on the cooling protocol due to the existence of metastable partially or completely orientationally disordered phases. EPR data indicate that the phases are metallic but not superconducting. The densities of states at the Fermi level appear too low to give superconductivity at above 5 K, consistent with recent observations that four electrons per C(70) anion are required for superconductivity. Size-matching on both the octahedral and tetrahedral sites is required for A(3)C(70) stability - K(2)CsC(70) is only stable at elevated temperature and Na(2)C(70) is unstable, the composition corresponding to C(70) and a sodium-rich trigonal phase.  相似文献   
104.
Pentacoordinate and tetracoordinate carbon and boron compounds (27, 38, 50-52, 56-61) bearing an anthracene skeleton with two oxygen or nitrogen atoms at the 1,8-positions were synthesized by the use of four newly synthesized tridentate ligand precursors. Several carbon and boron compounds were characterized by X-ray crystallographic analysis, showing that compounds 27, 56-59 bearing an oxygen-donating anthracene skeleton had a trigonal bipyramidal (TBP) pentacoordinate structure with relatively long apical distances (ca. 2.38-2.46 A). Despite the relatively long apical distances, DFT calculation of carbon species 27 and boron species 56 and experimental accurate X-ray electron density distribution analysis of 56 supported the existence of the apical hypervalent bond even though the nature of the hypervalent interaction between the central carbon (or boron) and the donating oxygen atom was relatively weak and ionic. On the other hand, X-ray analysis of compounds 50-52 bearing a nitrogen-donating anthracene skeleton showed unsymmetrical tetracoordinate carbon or boron atom with coordination by only one of the two nitrogen-donating groups. It is interesting to note that, with an oxygen-donating skeleton, the compound 61 having two chlorine atoms on the central boron atom showed a tetracoordinate structure, although the corresponding compound 60 with two fluorine atoms showed a pentacoordinate structure. The B-O distances (av 2.29 A) in 60 were relatively short in comparison with those (av 2.44 A) in 59 having two methoxy groups on the central boron atom, indicating that the B-O interaction became stronger due to the electron-withdrawing nature of the fluorine atoms.  相似文献   
105.
Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well.  相似文献   
106.
The growth mechanism of water clusters in carbon nanopores is clearly elucidated by in situ small-angle X-ray scattering (SAXS) studies and grand canonical Monte Carlo (GCMC) simulations at 293-313 K. Water molecules are isolated from each other in hydrophobic nanopores below relative pressures (P/P(0)) of 0.5. Water molecules associate with each other to form clusters of about 0.6 nm in size at P/P(0)=0.6, accompanied by a remarkable aggregation of these clusters. The complete filling of carbon nanopores finishes at about P/P(0)=0.8. The correlation length analysis of SAXS profiles leads to the proposal of a growth mechanism for these water clusters and the presence of the critical cluster size of 0.6 nm leads to extremely stable clusters of water molecules in hydrophobic nanopores. Once a cluster of the critical size is formed in hydrophobic nanopores, the predominant water adsorption begins to fill carbon nanopores.  相似文献   
107.
Temperature- and concentration-dependent aqueous phase diagram of a novel alkylglycoside, 1-O-phytanyl-beta-D-xyloside (beta-Xyl(Phyt)), was studied using small-angle X-ray scattering, polarizing optical microscopy, and differential scanning calorimetry. The phases found in this system include an Lc phase, an Lalpha phase, an HII phase, two inverted cubic phases of crystallographic space groups Pn3m and Ia3d, and a fluid isotropic phase, FI. The phase diagram of the beta-Xyl(Phyt)/water system is similar to that for the 1-monooleylglycerol (MO)/water system, suggesting that the phase behavior is largely determined by the overall molecular shape rather than the details of surfactant molecular structure. Moreover, the structural parameters of the beta-Xyl(Phyt) liquid crystals are also similar to those of the MO/water, due primarily to the similar molecular dimensions of two molecules. As compared to the MO/water system, however, the beta-Xyl(Phyt)/water system displays a lower value of TK ( approximately 8.(5) degrees C) and a wider temperature window for the mesophases (8.(5)-120 degrees C). Moreover, beta-Xyl(Phyt) is chemically more robust than MO, as the ether linkage is more stable against hydrolysis than the ester linkage and the phytanyl chain is fully saturated.  相似文献   
108.
A novel potential tridentate ligand, 1,8-bis(dimethylamino)-9-bromoanthracene, was synthesized. The key steps are as follows: 1) dimethylamination of 1,8-dibromo-9-methoxyanthracene by a modified Buchwald's method to afford 1,8-bis(dimethylamino)-9-methoxyanthracene, and 2) reduction of the methoxy group by LDBB (lithium di-tert-butylbiphenylide) followed by treatment with BrCF2CF2Br. The corresponding 1,8-bis(dimethylamino)-9-lithioanthracene, which should be a useful versatile tridentate ligand, could be generated by treatment of the bromide with one equivalent of nBuLi. The lithioanthracene reacted with B-chloroborane derivatives to give three 9-boryl derivatives. Although we recently reported that the crystal structure of 1,8-dimethoxy-9-B-catecholateborylanthracene was a symmetrical compound with the almost identical two O-B distances (2.379(2) and 2.441(2) A), the newly prepared 1,8-bis(dimethylamino)-9-borylanthracene derivatives clearly have unsymmetrical structures with coordination of only one NMe2 group toward the central boron atom. However, the energy difference between the unsymmetrical and symmeterical structures was found to be very small based on 1H NMR measurements, in which symmetrical anthracene patterns in the aromatic region (two kinds of doublets and a triplet) and a sharp singlet signal of the two NMe2 groups were observed even at -80 degrees C. 1,8-Bis(dimethylamino)-9-bromoanthracene itself can be a versatile ligand for transition metal compounds. In fact, direct palladation of the bromide took place by the reaction with [Pd2(dba)3].CHCl3 in THF to give the 9-palladated product. X-ray crystallographic analysis of the Pd compound showed that the square planar palladium atom was coordinated in a symmetrical fashion by both NMe2 groups (Pd-N bonds are 2.138(5) and 2.146(5) A).  相似文献   
109.
The mechanism of photocycloaddition of 2′-deoxyuridine (1a) and thymidine (1b) to 2,3-dimethyl-2-butene (Bu) in acetonitrile by UV irradiation has been studied. The reciprocal quantum yield for the cycloaddition increased linearly with reciprocal concentrations of Bu in acetonitrile to give limiting quantum yields at infinite concentration of Bu as 0.030 and 0.0096 for 1a and 1b , respectively. This shows that the cycloaddition proceeds in a two-step mechanism between the triplet state of 1 and Bu through biradical intermediates. Addition of cis-1,3-pentadiene quenched the reaction obeying the Stern–Volmer equation. The above quenching experiments and laser transient spectroscopy revealed that the triplet state of 1a reacts with Bu with much larger rate constant (1.3–1.6 × 109 M?1 s?1) than that of 1b (4–5 × 107 M?1 s?1) reflecting larger steric hindrance exerted in the reaction of 1b than that of 1a .  相似文献   
110.
The title compound, (NEt(4))[[Mn(salen)](2)Fe(CN)(6)] (1), was synthesized via a 1:1 reaction of [Mn(salen)(H(2)O)]ClO(4) with (NEt(4))(3)[Fe(CN)(6)] in a methanol/ethanol medium (NEt(4)(+) = tetraethylammonium cation, salen(2)(-) = N,N'-ethylenebis(salicylidene)iminate). The two-dimensional layered structure of 1 was revealed by X-ray crystallographic analysis: 1 crystallizes in monoclinic space group P2(1)/c with cell dimensions of a = 12.3660(8) A, b = 15.311(1) A, c = 12.918(1) A, beta = 110.971(4) degrees, Z = 2 and is isostructural to the previously synthesized compound, (NEt(4))[[Mn(5-Clsalen)](2)Fe(CN)(6)] (5-Clsalen(2-) = N,N'-ethylenebis(5-chlorosalicylidene)iminate; Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Inorg. Chem. 1997, 36, 670). The Mn ion is surrounded by an equatorial salen quadridentate ligand and two axial nitrogen atoms from the [Fe(CN)(6)](3-) unit, the four Fe[bond]CN groups of which coordinate to the Mn ions of [Mn(salen)](+) units, forming a two-dimensional network having [[bond]Mn[bond]NC[bond]Fe[bond]CN[bond]](4) cyclic repeating units. The network is spread over the bc-plane of the unit cell, and the layers are stacked along the a-axis. The countercation NEt(4)(+) is located between the layers. Compound 1 is a ferrimagnet with T(c) = 7.7 K and exhibits hysteresis with a remnant magnetization of 13.44 cm(3).mol(-1) (M/N mu(B) = 2.4) at zero field and a coercivity of 1000 Oe when the powder sample was measured at 1.9 K. Magnetic measurements of a direction-arranged single crystal were also carried out. The orientation of the crystallographic axes of a selected single crystal was determined by X-ray analysis, and magnetization was measured when an external field was applied in the a*, b, and c directions. The magnetization in the a* direction increased more easily than those in the b and c directions below the critical temperature. No hysteresis was observed only for the measurement in the a* direction, indicating the presence of strong structural anisotropy with potential anisotropy on Mn(III) ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号