首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   7篇
  国内免费   1篇
化学   158篇
晶体学   1篇
力学   8篇
数学   11篇
物理学   33篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   19篇
  2011年   17篇
  2010年   9篇
  2009年   12篇
  2008年   15篇
  2007年   21篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   9篇
  2000年   1篇
  1999年   3篇
  1996年   6篇
  1994年   2篇
  1988年   1篇
  1982年   1篇
  1926年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
201.
202.
The mechanism of formation of hydrates of chiral (S) 1,2,3,4-tetrahydro-3-isoquinoline (THIQM) with two water molecules has been investigated in jet-cooled condition by means of resonance-enhanced two-photon ionization and IR-UV double resonance experiments. Quantum chemical calculations reveal that only one isomer of the THIQM is involved in the THIQM-(H(2)O)(2) complex formation, in contrast with what was observed for THIQM-(H(2)O). Anharmonic vibration calculations allowed unambiguous assignment of THIQM-(H(2)O)(2) to a complex resulting from the addition of a water molecule on the most stable THIQM-(H(2)O) complex. A sequential mechanism for complex formation has been deduced from these results.  相似文献   
203.
The gas‐phase structures of the cinchona alkaloids, hydroquinine and its pseudoenantiomer hydroquinidine, are studied in a supersonic expansion by means of laser‐induced fluorescence and IR/UV double‐resonance spectroscopy. Vibrational spectroscopy combined with density functional calculations show that the conformational properties of the two pseudoenantiomers are identical. In both cases, they exist in two isoenergetic forms, with similar IR spectra. Both conformers are similar to the most stable cis‐γ‐open form of quinine; they differ from each other by the position of the ethyl substituent attached to the quinuclidine ring. Further differences between the two conformers are observed in the laser‐induced fluorescence spectrum. The first electronic transition is characterized by time‐dependent density functional theory and RI‐cc2 calculations, and is of ππ* nature. The results described here emphasize the role of the ethyl substituent in the structural differences between pseudoenantiomers of cinchona alkaloids.  相似文献   
204.
Innovative strategies that utilize nanoparticles (NPs) for a better delivery of drugs and to improve their therapeutic efficacy have been widely studied in many clinical fields, including oncology. To develop safe and reliable devices able to reach their therapeutic target, a hierarchical characterization of NP interactions with biological fluids, cells, and whole organisms is fundamental. Unfortunately, this aspect is often neglected and the development of standardized characterization methods would be of fundamental help to better elucidate the potentials of nanomaterials, even before the loading of the drugs. Here, we propose a multimodal in vitro/in vivo/ex vivo platform aimed at evaluating these interactions for the selection of the most promising NPs among a wide series of materials. To set the system, we used non-degradable fluorescent poly(methyl-methacrylate) NPs of different sizes (50, 100, and 200 nm) and surface charges (positive and negative). First we studied NP stability in biological fluids. Then, we evaluated NP interaction with two cell lines of triple-negative breast cancer (TNBC), 4T1, and MDA-MB231.1833, respectively. We found that NPs internalize in TNBC cells depending on their physico-chemical properties without toxic effects. Finally, we studied NP biodistribution in terms of tissue migration and progressive clearance in breast-cancer bearing mice. The use of highly stable poly(methyl-methacrylate) NPs enabled us to track them for a long time in cells and animals. The application of this platform to other nanomaterials could provide innovative suggestions for the development of a systematic method of characterization to select the most reliable nanodrug candidates for biomedical applications.  相似文献   
205.
Suppression of the dimerization of the viologen radical cation by cucurbit[7]uril ( CB7 ) in water is a well‐known phenomenon. Herein, two counter‐examples are presented. Two viologen‐containing thread molecules were designed, synthesized, and thoroughly characterized by 1H DOSY NMR spectrometry, UV/Vis absorption spectrophotometry, square‐wave voltammetry, and chronocoulometry: BV 4+, which contains two viologen subunits, and HV 12+, which contains six. In both threads, the viologen subunits are covalently bonded to a hexavalent phosphazene core. The corresponding [3]‐ and [7]pseudorotaxanes that form on complexation with CB7 , that is, BV 4+?( CB 7)2 and HV 12+?( CB 7)6, were also analyzed. The properties of two monomeric control threads, namely, methyl viologen ( MV 2+) and benzyl methyl viologen ( BMV 2+), as well as their [2]pseudorotaxane complexes with CB7 ( MV 2+? CB7 and BMV 2+? CB7 ) were also investigated. As expected, the control pseudorotaxanes remained intact after one‐electron reduction of their viologen‐recognition stations. In contrast, analogous reduction of BV 4+?( CB 7)2 and HV 12+?( CB 7)6 led to host–guest decomplexation and release of the free threads BV 2( . +) and HV 6( . +), respectively. 1H DOSY NMR spectrometric and chronocoulometric measurements showed that BV 2( . +) and HV 6( . +) have larger diffusion coefficients than the corresponding [3]‐ and [7]pseudorotaxanes, and UV/Vis absorption studies provided evidence for intramolecular radical‐cation dimerization. These results demonstrate that radical‐cation dimerization, a relatively weak interaction, can be used as a driving force in novel molecular switches.  相似文献   
206.
For the first time, infrared spectra on the sub-wavelength scale have been delivered by a synchrotron-radiation-induced thermal expansion technique [1 P.M. Donaldson, Optics Express 24(3), 18521864 (2016).[Crossref], [PubMed], [Web of Science ®] [Google Scholar]]. The novel experimental result was achieved by coupling an atomic force microscope (AFM) to an infrared (IR) beamline at the UK's national synchrotron facility, Diamond Light Source. Via broadband synchrotron illumination and an AFM sub-micron tip, molecular IR spectra were obtained by detecting a resonance-enhanced (RE) photothermal signal with spatial resolution beyond the diffraction limit. Together with results on synchrotron IR nanoscopy in scattering mode from the IR beamline at the Advanced Light Source two years ago, the Diamond photothermal nanoprobe approach moves vibrational analysis beyond the diffraction limit and into nanoscale absorption spectroscopy.  相似文献   
207.
Chiral recognition between alpha hydroxylesters has been studied in jet-cooled complexes of methyl mandelate with methyl lactate. The complex with nonchiral methyl glycolate has also been studied for the sake of comparison. The hydrogen-bond topology of the complexes has been interrogated by means of IR/UV double-resonance spectroscopy in the range of 3 mum. A theoretical approach has been conducted in conjunction with the experimental work to assist in the analysis of the spectra. Owing to the conformational flexibility of the subunits at play, emphasis has been put on the methodology used for the exploration of the potential-energy surface. The hydrogen-bond topology is very similar in the homo- and heterochiral complexes. It involves insertion of the hydroxyl group of methyl mandelate within the intramolecular hydrogen bond of methyl lactate or methyl glycolate, resulting in a five-membered ring. This contrasts with methyl lactate clusters previously studied by FTIR spectroscopy in a filet jet.  相似文献   
208.
Sialolithiasis is common in salivary glands, especially in the submandibular and parotid ducts. X-Ray diffractometry was the principal technique used for their analysis, sometimes associated with scanning electron microscopy. Hydroxyapatite was the most frequently described constituent, in association with whitlockite and other calcium phosphates as brushite or octocalcium phosphate. Proteic matter was detected, as mucoproteins, albumin, nucleoproteins or as degenerative bacterial matter. This study presents the identification of constituents by mid-infrared spectrometry of 74 sialoliths. Their successive layers are analyzed from their crust to the nucleus, using absorbance measurements. Spectra are compared with reference mixtures of two or more constituents. Approximately 99% of sialoliths are constituted of calcium phosphates, under carbonated forms. More than three-quarters contain proteins, in which mucins represent the majority and albumin is found in 10% of all the specimens. Only 7% calculi are an association of two constituents, 66% are made of three and 27% have four or more components. For the 74 studied sialoliths, no specimen contains hydroxyapatite; but they are composed of carbonate apatites with irregular microcrystallized forms, even if proteins are present. Some of them have a pure protein nucleus, surrounded by carbonate apatite layers; the other stones are made of internal layers of apatites and covered with a dense and varnished crust of proteins.  相似文献   
209.
Normal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (λ?=?2.5–25?μm), detecting vibrational transitions of chemical bonds. In this study, we exploited the cell’s inherent biochemical composition to discriminate SCs of the inter-follicular skin epidermis based on IR-derived markers. Paraffin-embedded samples of human scalp skin (n?=?4) were obtained, and 10-μm thick sections were mounted for IR spectroscopy. Samples were interrogated in transmission mode using synchrotron radiation-based Fourier-transform IR (FTIR) microspectroscopy (15?×?15?μm) and also imaged employing globar-source FTIR focal plane array (FPA) imaging (5.4?×?5.4?μm). Dependent on the location of derived spectra, wavenumber–absorbance/intensity relationships were examined using unsupervised principal component analysis. This approach showed clear separation and spectral differences dependent on cell type. Spectral biomarkers concurrently associated with segregation of SCs, transit-amplifying cells and terminally-differentiated cells of epidermis were primarily PO 2 ? vibrational modes (1,225 and 1,080?cm?1), related to DNA conformational alterations. FPA imaging coupled with hierarchical cluster analysis also indicated the presence of specific basal layer cells potentially originating from the follicular bulge, suggested by co-clustering of spectra. This study highlights PO 2 ? vibrational modes as potential putative SC markers.
Figure
“Delineating the putative stem cell lineage in interfollicular skin based on position-derived infrared spectral fingerprints”.  相似文献   
210.
We demonstrate twin-beam second-harmonic generation from telecommunications wavelengths in an optimized buried reverse proton exchanged planar waveguide made in 2D hexagonally poled LiNbO3. Experiments carried out with a nanosecond narrow-bandwidth, high-power fiber source thoroughly explored the response of the nonlinear photonic crystal device in terms of its power, wavelength, and angle tunability.  相似文献   
[首页] « 上一页 [13] [14] [15] [16] [17] [18] [19] [20] 21 [22] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号