首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   3篇
化学   128篇
晶体学   1篇
力学   5篇
数学   28篇
物理学   32篇
  2021年   2篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   13篇
  2007年   11篇
  2006年   13篇
  2005年   15篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   4篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1970年   7篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1960年   1篇
  1959年   1篇
  1943年   1篇
  1927年   2篇
排序方式: 共有194条查询结果,搜索用时 750 毫秒
111.
112.
113.
The acid composition of seed oil ofAmaranthus cruentus and the synthesis of their glycidyl and pyridinecontaining esters are studied. It is demonstrated that 67% of the total acids are C18-polyunsaturated linoleic and linolenic. A new method for preparing glycidyl esters of C18-unsaturated carboxylic acids is developed by reacting their salts with ECG in an aprotic medium to produce the corresponding glycidyl esters. The reaction of the glycidyl esters and pyridine salts with carboxylic and phosphonic acids produces the propanolpyridine esters of the acids that combine the properties of the acids and pyridinium salts and are promising in the search for biologically active compounds.A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center, Russian Academy of Sciences. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 217–219, May–June, 2000.  相似文献   
114.
On modern processors, data transfer exceeds floating-point operations as the predominant cost in many linear algebra computations. One tuning technique that focuses on reducing memory accesses is loop fusion. Determining the optimum amount of loop fusion to apply to a routine is difficult as fusion can both positively and negatively impact memory traffic. We present a model that accurately and efficiently evaluates how loop fusion choices affect data movement through the memory hierarchy. We show how to convert the model’s memory traffic predictions to runtime estimates that can be used to compare loop fusion variants.  相似文献   
115.
A non-perturbative algebraic theory of the lattice Boltzmann method is developed based on the symmetry of a product. It involves three steps: (i) Derivation of admissible lattices in one spatial dimension through a matching condition which imposes restricted extension of higher-order Gaussian moments, (ii) A special quasi-equilibrium distribution function found analytically in closed form on the product-lattice in two and three spatial dimensions, and which proves the factorization of quasi-equilibrium moments, and (iii) An algebraic method of pruning based on a one-into-one relation between groups of discrete velocities and moments. Two routes of constructing lattice Boltzmann equilibria are distinguished. The present theory includes previously known limiting and special cases of lattices, and enables automated derivation of lattice Boltzmann models from two-dimensional tables, by finding the roots of one polynomial and solving a few linear systems.  相似文献   
116.
We report the CuI/O2 chemistry of complexes derived from the macrocylic ligands 14‐TMC (1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane) and 12‐TMC (1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane). While [(14‐TMC)CuI]+ is unreactive towards dioxygen, the smaller analog [(12‐TMC)CuI(CH3CN)]+ reacts with O2 to give a side‐on bound peroxo‐dicopper(II) species (SP), confirmed by spectroscopic and computational methods. Intriguingly, 12‐TMC as a N4 donor ligand generates SP species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side‐on peroxo‐dicopper(II) differs from typical SP species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H+ to an isomerized peroxo core.  相似文献   
117.
In this article the possibility of radiation heat transfer to trigger transition to detonation is studied. It is assumed that the premixed deflagration front is able to emit and the unburnt mixture to absorb radiation heat effectively. Under this assumption the ability of the flame to significantly preheat the unburnt mixture and to form a promoting temperature gradient is investigated. First, we estimate the temperature rise due to the radiation preheating of the unburnt mixture, when it is traveling through deep flame wrinkles. Subsequently, we carry out numerical simulations of premixed gaseous combustion in a tube. The simulations confirm the possibility of formation of promoting temperature gradients within flame folds and initiation of the detonation waves. They demonstrate the plausibility of the proposed mechanism of the deflagration to detonation transition.  相似文献   
118.
Elemental sulfur (S8) reacts reversibly with the copper(I) complex [(TMPA')CuI](+) (1), where TMPA' is a TMPA (tris(2-pyridylmethyl)amine) analogue with a 6-CH2OCH3 substituent on one pyridyl ligand arm, affording a spectroscopically pure end-on bound disulfido-dicopper(II) complex [{(TMPA')Cu(II)}2(mu-1,2-S2(2-))](2+) (2) {nu(S-S) = 492 cm(-1); nu(Cu-S)sym = 309 cm(-1)}; by contrast, [(TMPA)Cu(I)(CH3CN)](+) (3)/S8 chemistry produces an equilibrium mixture of at least three complexes. The reaction of excess PPh3 with 2 leads to formal "release" of zerovalent sulfur and reduction of copper ion to give the corresponding complex [(TMPA')Cu(I)(PPh3)](+) (11) along with S=PPh3 as products. Dioxygen displaces the disulfur moiety from 2 to produce the end-on Cu2O2 complex, [{(TMPA')Cu(II)}2(mu-1,2-O2(2-)](2+) (9). Addition of the tetradentate ligand TMPA to 2 generates the apparently more thermodynamically stable [{(TMPA)Cu(II)}2(mu-1,2-S2(2-))](2+) (4) and expected mixture of other species. Bubbling 2 with CO leads to the formation of the carbonyl adduct [(TMPA')CuI(CO)](+) (8). Carbonylation/sulfur-release/CO-removal cycles can be repeated several times. Sulfur atom transfer from 2 also occurs in a near quantitative manner when it is treated with 2,6-dimethylphenyl isocyanide (ArNC), leading to the corresponding isothiocyanate (ArNCS) and [(TMPA')Cu(I)(CNAr)](+) (12). Complex 2 readily reacts with PhCH2Br: [{(TMPA')Cu(II)}2(mu-1,2-S(2)(2-)](2+) (2) + 2 PhCH2Br --> [{(TMPA')Cu(II)(Br)}2](2+) (6) + PhCH2SSCH2Ph. The unprecedented substrate reactivity studies reveal that end-on bound mu-1,2-disulfide-dicopper(II) complex 2 provides a nucleophilic S2(2-) moiety, in striking contrast to the electrophilic behavior of a recently described side-on bound mu-eta(2):eta(2)-disulfido-dicopper(II) complex, [{(N3)Cu(II)}(2)(mu-eta(2):eta(2)-S2(2-))](2+) (5) with tridentate N3 ligand. The investigation thus reveals striking analogies of copper/sulfur and copper/dioxygen chemistries, with regard to structure type formation and specific substrate reactivity patterns.  相似文献   
119.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   
120.
In the further development and understanding of heme-copper O2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) approximately 20 min; lambda max = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {nu(O-O) = 808 cm-1; Delta16O2/18O2 = 46 cm-1; Delta16O2/16/18O2 = 23 cm-1}. Consistent with a mu-eta2:eta1 bridging peroxide ligand, two metal-O stretching frequencies are observed {nu(Fe-O) = 533 cm-1, nu(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also muB = 5.1 +/- 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized mu-oxo complex [(F8TPP)FeIII-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). M?ssbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; delta = 0.57 mm/s, |DeltaEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and M?ssbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2-) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of mu-peroxo complex 3 yields mu-oxo complex 4 with concomitant release of approximately 0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 --> 2 --> 3 --> 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号