首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   37篇
  国内免费   4篇
化学   374篇
晶体学   5篇
力学   7篇
数学   43篇
物理学   76篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   13篇
  2019年   12篇
  2018年   11篇
  2017年   3篇
  2016年   18篇
  2015年   22篇
  2014年   15篇
  2013年   12篇
  2012年   25篇
  2011年   37篇
  2010年   30篇
  2009年   14篇
  2008年   34篇
  2007年   27篇
  2006年   26篇
  2005年   30篇
  2004年   31篇
  2003年   20篇
  2002年   21篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   10篇
  1995年   2篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有505条查询结果,搜索用时 250 毫秒
451.
This paper examines the numerical performance of the BFGS variable-metric algorithm and compares this performance with that of the DFP , SR1 , and OC algorithms. Numerical results indicate that the BFGS algorithm is far superior to the DFP and SR1 algorithms and comparable to the OC algorithm. Although the BFGS algorithm offers a viable method for the direct determination of localized molecular orbital coefficients, the method is not yet competitive with the more traditional methods.  相似文献   
452.
The excitation of gas-phase methyl benzoate at 240 nm leads to the observation of phosphorescence. The dispersed phosphorescence spectrum has an assigned origin of 25 270 cm−1 and a prominent C=O progression of 1720 cm−1, consistent with literature reports of gas-phase benzaldehyde spectroscopy. Weaker bands, which correspond to formaldehyde ν17 and ν25, are also evident. Time-resolved IR diode laser absorption spectroscopy has been used to probe formaldehyde. Excitation of methyl benzoate at 222 nm clearly indicates the generation of formaldehyde as a photoproduct. The temporal profile of the formaldehyde signal is consistent with significant nascent vibrational excitation in this product. The ratio of formaldehyde initially in the ground vibrational state to that in the excited vibrational states is estimated to be 0.6 ± 0.1. The proposed elimination mechanisms are analogous to those postulated for the formation of CO2 and acetaldehyde from pyruvic acid.  相似文献   
453.
A new class of alkyl-chain-appended pyrene derivatives 4-14 were synthesized and evaluated for their gelation abilities. Depending on the nature of the linking group, these compounds gelated a number of organic solvents, either in the presence or in the absence of the acceptor molecule 2,4,7-trinitrofluorenone (TNF). Compounds with ester, ether, or alkyl linkages gelated a number of hydroxylic and hydrocarbon solvents by means of a charge-transfer interaction with TNF, while compounds with amide, urethane and urea linkers formed gels on their own in a variety of solvents by means of pi-pi stacking and hydrogen-bonding interactions. The Xray crystal structure of urethane (S)-12 showed hydrogen-bonding and stacking features, as suggested by the model. The gels obtained were investigated by spectroscopic and electron microscopic techniques which provided structural insights.  相似文献   
454.
Self-constructed pressurized hot water extraction (PHWE) equipment was used in dynamic mode to extract spiked phenolic compounds (phenol, 3-methylphenol, 4-chloro-3-methylphenol and 3,4-dichlorophenol) from sea sand and soil. Phenols were analyzed by both gas chromatography-mass spectrometry (GC-MS) and capillary zone electrophoresis (CZE) to compare the techniques and to find out if CZE is a suitable tool for analysis of phenols extracted from environmental matrix. Good recoveries of phenols spiked in sea sand were achieved at all PHWE temperatures (50, 100, 200, 300 C). GC-MS studies showed that phenols were selectively extracted from soil at 50 C but various other compounds (e.g. polyaromatic hydrocarbons) were extracted along with the phenols at 300 degrees C. In the case of CZE, phenols extracted from the soil, at 300 C were separated with good resolution at pH 9.7, and co-extracted compounds did not interfere with the analysis. The analytical values obtained by GC-MS and CZE were generally of similar magnitude.  相似文献   
455.
(13)C NMR chemical shifts and nu(C[double bond]O) frequencies have been measured for several series of phenyl- or acyl-substituted phenyl acetates and for acyl-substituted methyl acetates to investigate the substituent-induced changes in the electrophilic character of the carbonyl carbon. Charge density, bond order, and energy calculations have also been performed. The spectroscopic and charge density results indicate that opposite to the conventional thinking, electron-withdrawing substituents do not increase the electrophilicity of the carbonyl carbon but instead decrease it. On the other hand, reaction energies of the isodesmic reactions designed show that electron-withdrawing substituents destabilize the carbonyl derivatives investigated. So, a significant ground-state destabilization of carboxylic acid esters, and carbonyl compounds in general, due to the decreased resonance stabilization, is proposed as a novel concept to explain both the increase in their reactivity and the changes in the chemical shifts and carbonyl frequencies induced by electron-withdrawing substituents.  相似文献   
456.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) with additional ab initio calculations were used to examine the alkali metal cation binding selectivity (i.e., molecular recognition) and host properties of tetraethyl resorcarene (1) and its per-methylated derivative (2). The significance of intramolecular hydrogen bonding for the crown conformation was demonstrated. The presence of intramolecular flip-flop hydrogen bonding in 1 was confirmed both with calculations and in ND3-exchange experiments. All the alkali metal cations formed host-guest complexes by docking inside the cavity of the host. Complexation with the larger cations, especially Cs+, was favored. All the alkali metal cations also formed dimeric resorcarene capsules with 1. The capsules were directly H-bonded species, with no linking solvent molecules. ND3-exchange experiments and molecular modeling revealed the significance of direct intermolecular H-bonding for the crown conformation of 1 and stability of the capsule structure.  相似文献   
457.
[structures: see text] Propagation of inductive and resonance effects of phenyl substituents within 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines were studied with the aid of 13C and 15N NMR chemical shifts and ab initio calculations. The substituent-induced changes in the chemical shift (SCS) were correlated with a dual substituent parameter equation. The contributions of conjugative (rhoR) and nonconjugative effects (rhoF) were analyzed, and mapping of the substituent-induced changes is given over the entire isoquinoline moiety for both series. The experimental results can be rationalized with the aid of the resonance polarization concept. This means the consideration of the substituent-sensitive balance of different resonance structures, i.e., electron delocalization, and the effect of the aromatic ring substituents on their relative contributions. With tetrahydroisoquinolines, the delocalization of the nitrogen lone pair (stereoelectronic effect) particularly contributes. Correlation analysis of the Mulliken atomic charges for the dihydroisoquinoline derivatives was also performed. The results support the concept of the substituent-sensitive polarization of the isoquinoline moiety even if the polarization pattern achieved via the NMR approach is not quite the same as that predicted by the computational charges. Previously the concepts of localized pi-polarization and extended polarization have been used to explain polar substituent effects within aromatic side-chain derivatives. We consider that the resonance polarization model effectively contributes to the understanding of the polar substituent effects.  相似文献   
458.
459.
Dynamic friction, sliding friction, and the stick-slip phenomenon have been studied on compacted polymer powders during high-velocity compaction. It is particularly important from a practical point of view to distinguish the stick-slip mechanism and the sliding mechanism which occur concurrently. A practical experimental system has been successfully developed to study the dry frictional force and to measure the sliding coefficient between the polymer powder particles and the die wall during high-velocity compaction. Two new components have been introduced as relaxation assists to improve the compaction process by reducing the frictional forces. It was found that the relaxation assist device leads to an improvement in the polymer powder compaction process by giving a more homogeneous opposite velocity and a better locking of the powder bed in the compacted form with less change in dimensions. The subsequent movement of the particles can be reduced and the powder bed attains a higher density with a minimum total elastic spring-back. The relative time of the stick-slip phenomenon during the compacting stage is also reduced so that the time needed to transfer from an intermittent stick-slip state to a smooth sliding state is reduced and the powder bed slides smoothly. It was found that the dynamic, dry frictional force is intermittent (stick-slip mechanism) at low compaction rates but that at high compaction rates is becomes more smooth (sliding mechanism). Both mechanisms depend on the nature of the powder and on the compaction conditions. At the beginning of the compaction stage, the sliding coefficient decreases due to an increase in the radial to axial stress ratio until the maximum pressure has been reached. During the reorganization stage, more time is needed for large particles to move, rotate and slide due to their relatively large diameter and mass. As a result, the reorganization stage is extended and the stick-slip phenomenon is observed more with increasing particle size. Much better transfer of the pressure throughout the powder bed and less loss of pressure lead to a higher sliding coefficient due to the overall friction during the compaction process. It was found that the sliding coefficient is proportional to the density.

A more homogeneous density distribution in the compacted powder and a smaller pressure loss during compaction has a major influence on the sliding coefficient and on the quality of the compacted material.  相似文献   

460.
Ab initio molecular orbital calculations using an extended Gaussian basis set have been performed on C2H4, CH2SiH2 and Si2H4. The species CH2 and SiH2 have also been examined. Geometries were partially optimized and the energy difference between the planar singlet and orthogonal or twist triplet geometries of Si2H4 was studied in order to provide a measure of the strength of the Si-Si bond in this molecule. Mulliken population analyses were carried out on CH2CH2 and SiH2SiH2, to further study the nature of the Si-Si double bond in comparison with the C—C double bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号